ARC Future Fellowships - Grant ID: FT130100472

Funding Activity

Does something not look right? The information on this page has been harvested from data sources that may not be up to date. We continue to work with information providers to improve coverage and quality. To report an issue, use the .

Funded Activity Summary

Trapped Ion Imaging for Biomolecular Dynamics. The functionality of large biological molecules is driven by their chemical composition and the folded shape of their active form. The higher-order structure and dynamics of nucleic acids, proteins, carbohydrates, and lipids drives the chemistry of life. Combining single molecule microscopy and trapped ion mass spectroscopy will develop a new tool for precision measurements of higher-order folding dynamics in large biomolecules. Optical techniques including Förster resonance energy transfer and super-resolution imaging can register changes in shape down to the nanometer scale. The uniquely adaptable ion trap environment enables manipulation of the surrounding solvent cage, temperature, and net charge down to the single quantum level.

Funded Activity Details

Start Date: 2014

End Date: 06-2018

Funding Scheme: ARC Future Fellowships

Funding Amount: $754,820.00

Funder: Australian Research Council