Linkage Infrastructure, Equipment And Facilities - Grant ID: Le200100003
Funder
Australian Research Council
Summary
3D Nanofabrication and Nanocharacterisation facility. This project aims to establish a revolutionary nanoscale fabrication and characterisation facility in Australia. The facility is an angle-based nanoscale etching system with integrated chemical analysis capabilities and will be the first instrument of its kind in Australia. The facility will enable unprecedented fabrication and characterisation of 3D nanostructures and new device geometries from semiconductors, oxides and metals that underpin ....3D Nanofabrication and Nanocharacterisation facility. This project aims to establish a revolutionary nanoscale fabrication and characterisation facility in Australia. The facility is an angle-based nanoscale etching system with integrated chemical analysis capabilities and will be the first instrument of its kind in Australia. The facility will enable unprecedented fabrication and characterisation of 3D nanostructures and new device geometries from semiconductors, oxides and metals that underpin modern nanoelectronics for innovative energy, nano-optical and quantum device applications. This unique equipment will facilitate breakthrough discoveries in nanomaterials, and foster collaborations amongst Australian researchers to accelerate industry in advanced nanodevice technologies.Read moreRead less
Interactions between linear and interfacial crystalline defects and their impact on mechanical properties in nanostructured metals and alloys. The project aims to apply in-situ deformation transmission electron microscopy to investigate the interactions among crystalline defects in nanostructured metallic materials and to explore the effect of the interactions on mechanical properties. The results will guide the structural design of nanomaterials with superior mechanical properties.
Effects of grain size on the deformation mechanisms and mechanical properties of Gum Metals (Ti alloys). The project aims to understand the relationships among grain size, mechanical properties and deformation mechanisms using in-situ deformation transmission electron microscopy techniques. This will provide the fundamental science for designing Gum Metals with superior properties for a range of engineered and biomedical applications.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE180100002
Funder
Australian Research Council
Funding Amount
$808,191.00
Summary
A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The fa ....A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The facility will significantly enhance the research capability in the newly established ARC Training Centre for Automated Manufacture of Advanced Composites, which will engage with Australian industry to improve productivity and material performance for industry sectors such as aerospace, automotive, marine, and sport.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: Le210100156
Funder
Australian Research Council
Summary
3D Two-Photon Nanoprinter for Advanced Multi-Functional Materials & Devices. The Nanoscribe Photonic Professional GT2 Two-Photon 3D Printer enables tailoring materials’ architecture at nanoscale. This results in unique optical, mechanical, electrical, chemical, biochemical, and acoustic properties enabling a wealth of cutting-edge research activities in variety of fields including mechanical/optical/electrical metamaterials, bioinspired hard/soft materials, biomaterials (e.g., structured cell-ti ....3D Two-Photon Nanoprinter for Advanced Multi-Functional Materials & Devices. The Nanoscribe Photonic Professional GT2 Two-Photon 3D Printer enables tailoring materials’ architecture at nanoscale. This results in unique optical, mechanical, electrical, chemical, biochemical, and acoustic properties enabling a wealth of cutting-edge research activities in variety of fields including mechanical/optical/electrical metamaterials, bioinspired hard/soft materials, biomaterials (e.g., structured cell-tissue interfaces), biomedical devices (implantable devices and drug-delivery systems), nanofluidics, and photonic crystals. In each of these fields, we will use GT2 to print variety of polymers, hydrogels, metals and ceramics, for example by printing polymer-derived nanoceramics that will be simultaneously strong and tough.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE180101190
Funder
Australian Research Council
Funding Amount
$359,446.00
Summary
Interfacial nano-engineering of electrodes for perovskite solar cells. This project aims to explore new strategies of functional electrode design and interfacial engineering for efficient and stable perovskite solar cell application. The key concept is to modify the electron transport and perovskite layers through structural design, interfacial engineering and contact passivation, for use in high-performance solar-to-electricity conversion systems with improved light harvesting and charge collec ....Interfacial nano-engineering of electrodes for perovskite solar cells. This project aims to explore new strategies of functional electrode design and interfacial engineering for efficient and stable perovskite solar cell application. The key concept is to modify the electron transport and perovskite layers through structural design, interfacial engineering and contact passivation, for use in high-performance solar-to-electricity conversion systems with improved light harvesting and charge collection. Expected project outcomes will place Australia at the forefront of practical low-cost and large-scale solar energy conversion technologies.Read moreRead less
Nanoengineered Polymeric Materials for Environmental and Biological Applications. The development of advanced materials with nanoengineered properties promises to revolutionise future industries, including the energy and healthcare sectors. This research program will involve the design, synthesis and assembly of tailored polymers to prepare next-generation, engineered materials. The research will deliver advanced polymeric membranes, tissue engineering scaffolds and vaccine delivery systems. The ....Nanoengineered Polymeric Materials for Environmental and Biological Applications. The development of advanced materials with nanoengineered properties promises to revolutionise future industries, including the energy and healthcare sectors. This research program will involve the design, synthesis and assembly of tailored polymers to prepare next-generation, engineered materials. The research will deliver advanced polymeric membranes, tissue engineering scaffolds and vaccine delivery systems. These materials are expected to provide benefits for Australian citizens in the energy and health sectors and contribute to the development of a robust Australian nanotechnology industry. The projects will also provide opportunities for the development of outstanding young scientists and will foster multidisciplinary collaborations.Read moreRead less
Engineering two dimensional polymers for membrane-based chemical separation. This project aims to develop novel two-dimensional polymers with precisely controlled pore-sizes for preparing membrane materials which can efficiently separate these gaseous chemicals at ambient temperatures. Key industrial chemical mixtures with similar size and boiling points are difficult to separate by conventional distillation methods. Currently, purification of olefins alone accounts for 0.3% of global energy use ....Engineering two dimensional polymers for membrane-based chemical separation. This project aims to develop novel two-dimensional polymers with precisely controlled pore-sizes for preparing membrane materials which can efficiently separate these gaseous chemicals at ambient temperatures. Key industrial chemical mixtures with similar size and boiling points are difficult to separate by conventional distillation methods. Currently, purification of olefins alone accounts for 0.3% of global energy use. The expected outcomes of the project will have a huge impact on industrial purification processing by providing a disruptive membrane technology, and will significantly reduce energy consumption and open up new routes for resources.Read moreRead less
Electro-Optical Primers for Safe Use and Clean Manufacturing. Conventional primers contain a mechanically-sensitive primary explosive that is used to detonate the more stable propellant in a bullet. This project aims to address the health and environmental impacts of heavy metals in current primers by replacing them with benign, electrically or optically activated silicon-based materials. Modern semiconductor fabrication techniques will be used to develop safe and clean primers through cost-effe ....Electro-Optical Primers for Safe Use and Clean Manufacturing. Conventional primers contain a mechanically-sensitive primary explosive that is used to detonate the more stable propellant in a bullet. This project aims to address the health and environmental impacts of heavy metals in current primers by replacing them with benign, electrically or optically activated silicon-based materials. Modern semiconductor fabrication techniques will be used to develop safe and clean primers through cost-effective doping and deposition protocols. The expected outcomes of the project include a sovereign primer manufacturing capability for Australia. This will provide a significant strategic advantage and health benefits for law enforcement and defence personnel during live fire training and firing range exercises.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100188
Funder
Australian Research Council
Funding Amount
$1,000,000.00
Summary
Epitaxial growth facility for advanced materials. An advanced materials fabrication facility accessible to all Australian researchers will be established. This will allow crystal growth at the atomic level for novel materials with applications including fundamental physics, nanocomposites, energy storage and conversion systems, and solar cells.