Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100131
Funder
Australian Research Council
Funding Amount
$150,000.00
Summary
Biomaterials characterisation facility. The convergence of nanotechnology and biotechnology offers new opportunities to prepare nanoengineered materials for applications in biomedicine. The Biomaterials Characterisation Facility will provide equipment to characterise such nanoengineered materials to underpin advances in therapeutic drug delivery and tissue engineering.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE180100001
Funder
Australian Research Council
Funding Amount
$345,475.00
Summary
Pushing the limits of fluorescence microscopy with adaptive optics. This project aims to establish an adaptive optics, super-resolution optical microscopy facility to image cellular events with the highest possible spatial resolution, in a whole cell or tissue context. Sophisticated computer-controlled deformable mirrors will be used to correct the way light is distorted as it passes through specimens, thereby overcoming aberrations found in thick and complex samples. This adaptive optics system ....Pushing the limits of fluorescence microscopy with adaptive optics. This project aims to establish an adaptive optics, super-resolution optical microscopy facility to image cellular events with the highest possible spatial resolution, in a whole cell or tissue context. Sophisticated computer-controlled deformable mirrors will be used to correct the way light is distorted as it passes through specimens, thereby overcoming aberrations found in thick and complex samples. This adaptive optics system will enable researchers to study complex behaviour of biological specimens, at the optical resolution limit in plant and animal tissues, leading to basic biology and biotechnology outcomes in biofuels, biomaterials and biomedicines.Read moreRead less
Biofilm responses to cold atmospheric plasma . This project is focused on understanding the interaction of cold atmospheric plasmas with biofilms, with the aim of biofilm eradication and ultimately offering an environmentally friendly alternative to current detergents and antibiotics. The research expects to elucidate the fundamental mechanisms of action for breakthrough plasma intervention technologies, which are sufficiently active to cope with the resistant nature of biofilms, yet are of low ....Biofilm responses to cold atmospheric plasma . This project is focused on understanding the interaction of cold atmospheric plasmas with biofilms, with the aim of biofilm eradication and ultimately offering an environmentally friendly alternative to current detergents and antibiotics. The research expects to elucidate the fundamental mechanisms of action for breakthrough plasma intervention technologies, which are sufficiently active to cope with the resistant nature of biofilms, yet are of low energy, do not adversely affect surface properties and critically leave no residual chemistry. This should provide significant benefits by delivering a new method to tackle the ubiquitous problem of biofilm contamination in food, water and medical areas.Read moreRead less
Visualising molecular level detail in single cells and intact tissues. The goal of this project is to deliver a new toolkit for imaging cells at an unprecedented resolution and level of chemical detail. We will expand the capabilities of two existing, but complementary, methods: optical fluorescence microscopy with responsive probes and X-ray fluorescence imaging. Expected outcomes include improved techniques and benchmarks for visualising bacterial and mammalian cells; development of new molecu ....Visualising molecular level detail in single cells and intact tissues. The goal of this project is to deliver a new toolkit for imaging cells at an unprecedented resolution and level of chemical detail. We will expand the capabilities of two existing, but complementary, methods: optical fluorescence microscopy with responsive probes and X-ray fluorescence imaging. Expected outcomes include improved techniques and benchmarks for visualising bacterial and mammalian cells; development of new molecules for elucidating cellular chemistry; better utilisation of valuable synchrotron resources; and greater understanding of the strengths and limitations of current microscopy workflows. Results should benefit the biotechnology sector, and may lead to improved medical, diagnostic, and bioremediation capacity.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100181
Funder
Australian Research Council
Funding Amount
$650,000.00
Summary
Strengthening merit-based access and support at the new National Computing Infrastructure petascale supercomputing facility. World-leading high-performance computing is fundamental to Australia's international research success. This facility will provide access to the new National Computational Infrastructure facility by world-leading researchers from six research universities, and sustain ground-breaking work in an increasingly competitive environment.
Nettles & toxic toupees: the molecular weaponry of venomous caterpillars. This project aims to investigate the structure, function and evolution of peptide toxins in venoms made by caterpillars in superfamily Zygaenoidea. Caterpillars in this group are covered in spines that inject pain-causing venoms, and this protects them from vertebrate and invertebrate predators. This project will test if peptides in this venom cause pain by pharmacological modulation of mammalian ion channels and signallin ....Nettles & toxic toupees: the molecular weaponry of venomous caterpillars. This project aims to investigate the structure, function and evolution of peptide toxins in venoms made by caterpillars in superfamily Zygaenoidea. Caterpillars in this group are covered in spines that inject pain-causing venoms, and this protects them from vertebrate and invertebrate predators. This project will test if peptides in this venom cause pain by pharmacological modulation of mammalian ion channels and signalling receptors, and if they have insecticidal properties. The first three-dimensional structures of caterpillar venom peptides will also be solved. Genomes of representatives of two different zygaenoid families will be produced, and genomic techniques will be used to elucidate how venom use evolved at the molecular level.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE150100652
Funder
Australian Research Council
Funding Amount
$345,000.00
Summary
Regulation of organ size and stem cell hierarchy in the developing kidney. Transient stem/progenitor cell populations play essential roles in establishing organ systems. The balance between self-renewal and differentiation in the nephron progenitor population plays a major, but poorly understood, role in regulating kidney development. Factors produced by undifferentiated progenitors promote organ expansion, whereas differentiation of these cells builds functional capacity. What is not clear is h ....Regulation of organ size and stem cell hierarchy in the developing kidney. Transient stem/progenitor cell populations play essential roles in establishing organ systems. The balance between self-renewal and differentiation in the nephron progenitor population plays a major, but poorly understood, role in regulating kidney development. Factors produced by undifferentiated progenitors promote organ expansion, whereas differentiation of these cells builds functional capacity. What is not clear is how the balance between self-renewal and differentiation is regulated in these cells, nor how the control of this fate decision impacts on optimal organ development. This project aims to dissect the molecular identity, regulation, and influence of this stem cell population on kidney development.Read moreRead less
The cellular basis of branching morphogenesis during kidney development. This project aims to study the process of branching morphogenesis which drives the development of the kidney. Previous studies group have demonstrated, in general terms, how branching progresses during gestation. However, little is known about the fundamental cellular events which trigger or characterise this basic developmental process. This project expects to provide deep insights into the cellular basis of tissue and org ....The cellular basis of branching morphogenesis during kidney development. This project aims to study the process of branching morphogenesis which drives the development of the kidney. Previous studies group have demonstrated, in general terms, how branching progresses during gestation. However, little is known about the fundamental cellular events which trigger or characterise this basic developmental process. This project expects to provide deep insights into the cellular basis of tissue and organ development. In studying this process the project should provide critical insights into how cells act, individually and collectively, to build tissues.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE170100310
Funder
Australian Research Council
Funding Amount
$360,533.00
Summary
Atmospheric trace gases: Fuelling the dormant microbial majority. This project aims to determine the physiological roles and ecological significance of hydrogen, methane and carbon monoxide scavenging. Bacteria adapt to adverse environmental conditions such as energy-starvation by entering dormant states. The fuel sources that sustain this dormant majority have yet to be resolved. Aerobic soil bacteria survive by scavenging trace gases from the atmosphere; they literally live on thin air. These ....Atmospheric trace gases: Fuelling the dormant microbial majority. This project aims to determine the physiological roles and ecological significance of hydrogen, methane and carbon monoxide scavenging. Bacteria adapt to adverse environmental conditions such as energy-starvation by entering dormant states. The fuel sources that sustain this dormant majority have yet to be resolved. Aerobic soil bacteria survive by scavenging trace gases from the atmosphere; they literally live on thin air. These trace gas scavengers are the major biological sinks in the global methane and hydrogen cycles. This project aims to study entire ecosystems of trace gas scavengers, which could enhance understanding of soil microbial ecology and biogeochemical cycling. By studying the regulation and distribution of gas scavenging, we can better model how these sinks respond to global change.Read moreRead less
The biogenesis of bacterial outer membranes; how bacteria build their surface membranes. The outer membrane protects probiotic bacteria in the human intestine and enables pathogenic bacteria to cause infectious diseases. We will determine bacteria build their outer membranes - outstanding training opportunities come through cutting edge technology and the development of skills not common in Australia.