Industrial Transformation Training Centres - Grant ID: IC210100019
Funder
Australian Research Council
Funding Amount
$4,583,816.00
Summary
ARC Training Centre for Optimal Ageing. The ARC Training Centre for Optimal Ageing aims to address issues identified by older adults as essential for quality of life. With our industry partners, we aim to train the next generation of researchers to understand, detect and improve psychosocial factors that support mental activity, physical health and social connectedness, and embrace advances in artificial intelligence, digital-enriched environments and adaptive workplaces to deliver effective dig ....ARC Training Centre for Optimal Ageing. The ARC Training Centre for Optimal Ageing aims to address issues identified by older adults as essential for quality of life. With our industry partners, we aim to train the next generation of researchers to understand, detect and improve psychosocial factors that support mental activity, physical health and social connectedness, and embrace advances in artificial intelligence, digital-enriched environments and adaptive workplaces to deliver effective digital solutions. By developing new capacity and capability to drive the digital transformation of industries supporting our ageing population, our Centre seeks to deliver economic and social benefits that enable Australians to live enriched, healthy and independent lives as they age.Read moreRead less
Pattern recognition in animals and machines: using machine learning to reveal cues central to the identification of individuals. The power to recognise individuals of a species requires significant image and pattern discrimination abilities. Yet, individual recognition has been found in a huge range of species, from humans to invertebrates demonstrating its importance for social interactions. The project will investigate this ability in lower vertebrates (fish, with no visual cortex), so as to u ....Pattern recognition in animals and machines: using machine learning to reveal cues central to the identification of individuals. The power to recognise individuals of a species requires significant image and pattern discrimination abilities. Yet, individual recognition has been found in a huge range of species, from humans to invertebrates demonstrating its importance for social interactions. The project will investigate this ability in lower vertebrates (fish, with no visual cortex), so as to understand the underlying mechanisms of pattern discrimination. The project will also test how robust this ability is during changes in water quality (elevated carbon dioxide levels and increased turbidity). The outcomes will further our knowledge base in lower vertebrate vision and evolution, and also have implications for human vision, image analysis, and artificial vision.Read moreRead less
Next generation smart lighting to improve sleep and alertness. Light has a powerful influence on our sleep and alertness. The manipulation of the amount of blue in a light source and the visual brightness of a light source are key factors, but there has been no systematic study that can guide manufacturers in the design of the ideal light source for promoting either sleep or alertness. This study will systematically examine the impact of the amount of blue light in a light source and the visual ....Next generation smart lighting to improve sleep and alertness. Light has a powerful influence on our sleep and alertness. The manipulation of the amount of blue in a light source and the visual brightness of a light source are key factors, but there has been no systematic study that can guide manufacturers in the design of the ideal light source for promoting either sleep or alertness. This study will systematically examine the impact of the amount of blue light in a light source and the visual brightness, creating a wide range of combinations that can be used to model the optimal light specifications for sleep and alertness, while maintaining visual acuity and colour discrimination. This will be the evidence base needed by the lighting industry to create the next generation of smart lighting.Read moreRead less
Tools for manipulating neuronal activity for behavioural studies. This project aims to develop optogenetic tools neuroscientists can use to better understand brain circuitry and the functional effects of specific neurons on behaviour. Linking the activity of individual neurons in the brain to specific behaviours is a major challenge in neuroscience. Optogenetics achieve this by using light to control the activity of neurons. This has advanced understanding of behaviour and neurocircuitry. This p ....Tools for manipulating neuronal activity for behavioural studies. This project aims to develop optogenetic tools neuroscientists can use to better understand brain circuitry and the functional effects of specific neurons on behaviour. Linking the activity of individual neurons in the brain to specific behaviours is a major challenge in neuroscience. Optogenetics achieve this by using light to control the activity of neurons. This has advanced understanding of behaviour and neurocircuitry. This project is expected to increase understanding of brain function at the cellular and system levels, and advance Australia’s multidisciplinary research capacity in neuroscience, cognitive sciences and nanobiotechnology to ultimately treat neurological disorders.Read moreRead less
ARC Centre of Excellence for Integrative Brain Function. The Centre of Excellence for Integrative Brain Function will address one of the greatest scientific challenges of the 21st century to understand how the brain works. We will investigate complex functions such as attention, prediction and decision-making, which require the coordination of information processing by many areas of the brain. This will require a highly collaborative approach involving neurobiologists, cognitive scientists, eng ....ARC Centre of Excellence for Integrative Brain Function. The Centre of Excellence for Integrative Brain Function will address one of the greatest scientific challenges of the 21st century to understand how the brain works. We will investigate complex functions such as attention, prediction and decision-making, which require the coordination of information processing by many areas of the brain. This will require a highly collaborative approach involving neurobiologists, cognitive scientists, engineers and physicists, allowing us to translate our discoveries into novel technologies for the social and economic benefit of all Australians. We will also train a new generation of multidisciplinary researchers, and contribute our expertise to a range of public education and awareness programs.Read moreRead less
Melanopsin function in humans. This project aims to understand melanopsin signalling in humans. A newly discovered retinal ganglion cell class expresses the melanopsin photopigment. Melanopsin signalling controls neural functions for light dependent image formation and non-image forming processes. Many of these are unknown in humans. This project will use a 5-primary photostimulator to define how melanopsin controls these processes in humans. The outcomes are expected to advance understanding of ....Melanopsin function in humans. This project aims to understand melanopsin signalling in humans. A newly discovered retinal ganglion cell class expresses the melanopsin photopigment. Melanopsin signalling controls neural functions for light dependent image formation and non-image forming processes. Many of these are unknown in humans. This project will use a 5-primary photostimulator to define how melanopsin controls these processes in humans. The outcomes are expected to advance understanding of human vision. This could provide avenues for using light to increase active participation in society and improve health and well-being, and strategies to assess human vision and the body’s internal clock.Read moreRead less
PET imaging of learning-related plasticity in awake behaving rats. The objective of the project is to combine an investigation of basic learning paradigms with functional Positron emission tomography (PET) imaging in rats in order to answer critical questions about the neurobiological basis of learning and decision-making in the brain. MicroPET technology provides PET images without the confounds induced by anaesthesia. Using this technology, the project intends to observe whole-brain changes in ....PET imaging of learning-related plasticity in awake behaving rats. The objective of the project is to combine an investigation of basic learning paradigms with functional Positron emission tomography (PET) imaging in rats in order to answer critical questions about the neurobiological basis of learning and decision-making in the brain. MicroPET technology provides PET images without the confounds induced by anaesthesia. Using this technology, the project intends to observe whole-brain changes in dopamine neurotransmission in awake, behaving rats while they learn to predict motivationally relevant outcomes based on environmental cues and on their own actions (ie during Pavlovian and instrumental conditioning, respectively). The outcomes of this research may improve our understanding of the neural changes responsible for debilitating disorders of the brain and mind.Read moreRead less
PET imaging of learning-related plasticity in awake behaving rats. The objective of the project is to combine an investigation of basic learning paradigms with functional Positron emission tomography (PET) imaging in rats in order to answer critical questions about the neurobiological basis of learning and decision-making in the brain. MicroPET technology provides PET images without the confounds induced by anaesthesia. Using this technology, the project intends to observe whole-brain changes in ....PET imaging of learning-related plasticity in awake behaving rats. The objective of the project is to combine an investigation of basic learning paradigms with functional Positron emission tomography (PET) imaging in rats in order to answer critical questions about the neurobiological basis of learning and decision-making in the brain. MicroPET technology provides PET images without the confounds induced by anaesthesia. Using this technology, the project intends to observe whole-brain changes in dopamine neurotransmission in awake, behaving rats while they learn to predict motivationally relevant outcomes based on environmental cues and on their own actions (ie during Pavlovian and instrumental conditioning, respectively). The outcomes of this research may improve our understanding of the neural changes responsible for debilitating disorders of the brain and mind.Read moreRead less
Closing the loop between salience and brain activity. This project aims to understand how animals exposed to an abundance of highly complex information decide what to attend to, that is, how they determine visual saliency. The project will approach this question by systematically tracking visual decision-making in the smallest animal brains, in closed-loop virtual reality environment. This approach will uncover basic working principles applicable to any system that needs to pay attention in a vi ....Closing the loop between salience and brain activity. This project aims to understand how animals exposed to an abundance of highly complex information decide what to attend to, that is, how they determine visual saliency. The project will approach this question by systematically tracking visual decision-making in the smallest animal brains, in closed-loop virtual reality environment. This approach will uncover basic working principles applicable to any system that needs to pay attention in a visually cluttered world, from insects to humans or autonomous vehicles.Read moreRead less
Unleashing the potential of VR: reducing sickness in head-mounted displays. Virtual reality (VR) is a breakthrough technology with a host of applied uses. Unfortunately, many people become sick when using head-mounted displays (HMDs). Our project proposes, and aims to test, a new theory of this cybersickness. We intend to quantify the sensory conflicts produced by HMD VR for the first time and measure their effects on perception, eye-movements, balance and well-being. The project will 1) determi ....Unleashing the potential of VR: reducing sickness in head-mounted displays. Virtual reality (VR) is a breakthrough technology with a host of applied uses. Unfortunately, many people become sick when using head-mounted displays (HMDs). Our project proposes, and aims to test, a new theory of this cybersickness. We intend to quantify the sensory conflicts produced by HMD VR for the first time and measure their effects on perception, eye-movements, balance and well-being. The project will 1) determine the causes of, and conditions responsible for, cybersickness; and 2) offer practical information on how to prevent it. These outcomes are expected to directly benefit, and greatly improve HMD use in, fields ranging from defence, education, entertainment, gaming, medicine, real estate, simulation training and tourism.Read moreRead less