Computational neuroanatomy: analysis of neural connections in the primate brain. This project will map the full network of connections between brain cells, using a computer graphics database that will consolidate data from hundreds of experiments. This will allow the first realistic simulations of neural activity, and will provide new insights about the structure and function of the nervous system.
How do myelinating cells alter brain circuits to facilitate learning? This project aims to identify the brain circuits that receive new insulation and characterise the molecular mediators of this process. This project will apply innovative technologies to understand how the nervous system remains adaptable throughout life. This new knowledge, of the cellular mechanisms that allow brain circuits to remain adaptable throughout life, may have application in the development of interventions aimed at ....How do myelinating cells alter brain circuits to facilitate learning? This project aims to identify the brain circuits that receive new insulation and characterise the molecular mediators of this process. This project will apply innovative technologies to understand how the nervous system remains adaptable throughout life. This new knowledge, of the cellular mechanisms that allow brain circuits to remain adaptable throughout life, may have application in the development of interventions aimed at improving educational outcomes or counteracting age-related memory decline. Potential future benefits include facilitating the development of drugs to circumvent memory loss resulting from brain diseases, and improving the design of neuromorphic hardware for computing.Read moreRead less
The role of spike patterning in shaping human perception of tactile stimuli. Every touch sensation from our fingertips is conveyed to the brain through the nerves by means of electrical impulses similar to any digital device. Using unique technology developed in our lab we can intercept this neural communication and insert our own messages to test how these signals are interpreted and converted into perceptual experiences. We aim to reveal the rules by which timing of neural signal patterns shap ....The role of spike patterning in shaping human perception of tactile stimuli. Every touch sensation from our fingertips is conveyed to the brain through the nerves by means of electrical impulses similar to any digital device. Using unique technology developed in our lab we can intercept this neural communication and insert our own messages to test how these signals are interpreted and converted into perceptual experiences. We aim to reveal the rules by which timing of neural signal patterns shapes the perception of touch - specifically intensity and frequency of vibration. By recording signals from neurons and by testing human perception, we will learn about neural processing mechanisms. The new knowledge generated about sensory coding will be essential for rendering a virtual sense of touch.Read moreRead less
The encoding of friction by tactile mechanoreceptors - the key to fingertip force control during dexterous object manipulation by humans. Unmatched human ability to control the hand so that brittle objects are gently held without slipping, or being crushed by excessive force rely on sophisticated tactile sense in the fingertips. This project will record and analyse signals which human nerves are sending from fingertip receptors to the brain centres controlling hand actions.
Sensory mechanisms underlying human dexterity in object manipulation. This project aims to understand the sensory mechanisms and biomechanics underlying sensory encoding. Tactile sensory information is crucial for controlling grip forces so that delicate objects are held without slipping, or being crushed by excessive force. This project will record signals from single human tactile receptors using microneurography. By modelling the neural data with skin biomechanical events, this project aims t ....Sensory mechanisms underlying human dexterity in object manipulation. This project aims to understand the sensory mechanisms and biomechanics underlying sensory encoding. Tactile sensory information is crucial for controlling grip forces so that delicate objects are held without slipping, or being crushed by excessive force. This project will record signals from single human tactile receptors using microneurography. By modelling the neural data with skin biomechanical events, this project aims to reveal sensory mechanisms underlying the human ability to manipulate objects and use tools. This research could lead to next generation sensory-controlled prosthetics and robotic manipulators.Read moreRead less
Application of high resolution functional brain imaging to the topographic organisation of object perception. This project will translate recent technological advancements for imaging the cortical areas responsible for visual perception such as object recognition and reading. It will produce brain maps of unprecedented detail, closing gaps in our present knowledge.
Discovery Early Career Researcher Award - Grant ID: DE180100433
Funder
Australian Research Council
Funding Amount
$365,058.00
Summary
Cortical layer specific functional imaging of the human brain. This project aims to record layer specific cortical activity in humans by leveraging ultra-high field magnetic resonance imaging. It expects to yield robust techniques for the general analysis of neuroimaging-based, layer-specific measurements. This project will progress the fields of cognitive neuroscience and neuroimaging as well as bring the field of neuroimaging closer to that of neurophysiology and thus facilitate collaboration ....Cortical layer specific functional imaging of the human brain. This project aims to record layer specific cortical activity in humans by leveraging ultra-high field magnetic resonance imaging. It expects to yield robust techniques for the general analysis of neuroimaging-based, layer-specific measurements. This project will progress the fields of cognitive neuroscience and neuroimaging as well as bring the field of neuroimaging closer to that of neurophysiology and thus facilitate collaboration among researchers.Read moreRead less
Hierarchical information processing in the primate visual cortex. This project aims to understand how visual information is transformed across hierarchical levels in the brain. Neuroscientists have long recognised that the visual cortex can be conceptualised as a hierarchical processing network. This became apparent when learning algorithms based on hierarchical networks ("deep learning") changed artificial intelligence. This project will combine high-throughput electrophysiology with analytical ....Hierarchical information processing in the primate visual cortex. This project aims to understand how visual information is transformed across hierarchical levels in the brain. Neuroscientists have long recognised that the visual cortex can be conceptualised as a hierarchical processing network. This became apparent when learning algorithms based on hierarchical networks ("deep learning") changed artificial intelligence. This project will combine high-throughput electrophysiology with analytical tools adopted from deep learning. By explaining the physiological properties of higher-level neurons in terms of hierarchical networks, the project expects to address long standing questions in neuroscience, and provide insights on biological hierarchical computation.Read moreRead less
Building a visual world: how brain circuits create and use representations. This project aims to demonstrate the presence, computation, and use of an invariant representation for texture structure. The proposed approach is interdisciplinary and combines image analysis, electrophysiology, optogenetics and computational modelling.
Expected outcomes of this project include learning how neurons encode properties of natural images, defining a novel computational tool for analysis of textures, and ne ....Building a visual world: how brain circuits create and use representations. This project aims to demonstrate the presence, computation, and use of an invariant representation for texture structure. The proposed approach is interdisciplinary and combines image analysis, electrophysiology, optogenetics and computational modelling.
Expected outcomes of this project include learning how neurons encode properties of natural images, defining a novel computational tool for analysis of textures, and new knowledge of how multiple brain areas work together to represent the visual world. This should provide significant benefits for the development of artificial visual systems, and impact on brain research broadly by increasing the number of tools available to predict complex representations at the cellular level.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE210100508
Funder
Australian Research Council
Funding Amount
$462,948.00
Summary
How predictions affect visual processing across the cortical hierarchy . Unlike traditional theories of visual perception, recent evidence suggests what a person expects can fundamentally change how they see the world. However, the neuronal mechanisms which would allow expectation to affect perception are poorly understood. This project will use revolutionary recording techniques to determine how multiple brain regions interact to use predictions about the future to change visual processing. The ....How predictions affect visual processing across the cortical hierarchy . Unlike traditional theories of visual perception, recent evidence suggests what a person expects can fundamentally change how they see the world. However, the neuronal mechanisms which would allow expectation to affect perception are poorly understood. This project will use revolutionary recording techniques to determine how multiple brain regions interact to use predictions about the future to change visual processing. The expected outcome is understanding a fundamental theory of brain function for the first time at the level of single neurons. This project will contribute to a new understanding of central theories of how the brain allows us to see which will significantly enhance basic vision science.Read moreRead less