How do myelinating cells alter brain circuits to facilitate learning? This project aims to identify the brain circuits that receive new insulation and characterise the molecular mediators of this process. This project will apply innovative technologies to understand how the nervous system remains adaptable throughout life. This new knowledge, of the cellular mechanisms that allow brain circuits to remain adaptable throughout life, may have application in the development of interventions aimed at ....How do myelinating cells alter brain circuits to facilitate learning? This project aims to identify the brain circuits that receive new insulation and characterise the molecular mediators of this process. This project will apply innovative technologies to understand how the nervous system remains adaptable throughout life. This new knowledge, of the cellular mechanisms that allow brain circuits to remain adaptable throughout life, may have application in the development of interventions aimed at improving educational outcomes or counteracting age-related memory decline. Potential future benefits include facilitating the development of drugs to circumvent memory loss resulting from brain diseases, and improving the design of neuromorphic hardware for computing.Read moreRead less
Computational neuroanatomy: analysis of neural connections in the primate brain. This project will map the full network of connections between brain cells, using a computer graphics database that will consolidate data from hundreds of experiments. This will allow the first realistic simulations of neural activity, and will provide new insights about the structure and function of the nervous system.
The encoding of friction by tactile mechanoreceptors - the key to fingertip force control during dexterous object manipulation by humans. Unmatched human ability to control the hand so that brittle objects are gently held without slipping, or being crushed by excessive force rely on sophisticated tactile sense in the fingertips. This project will record and analyse signals which human nerves are sending from fingertip receptors to the brain centres controlling hand actions.
Sensory mechanisms underlying human dexterity in object manipulation. This project aims to understand the sensory mechanisms and biomechanics underlying sensory encoding. Tactile sensory information is crucial for controlling grip forces so that delicate objects are held without slipping, or being crushed by excessive force. This project will record signals from single human tactile receptors using microneurography. By modelling the neural data with skin biomechanical events, this project aims t ....Sensory mechanisms underlying human dexterity in object manipulation. This project aims to understand the sensory mechanisms and biomechanics underlying sensory encoding. Tactile sensory information is crucial for controlling grip forces so that delicate objects are held without slipping, or being crushed by excessive force. This project will record signals from single human tactile receptors using microneurography. By modelling the neural data with skin biomechanical events, this project aims to reveal sensory mechanisms underlying the human ability to manipulate objects and use tools. This research could lead to next generation sensory-controlled prosthetics and robotic manipulators.Read moreRead less
The encoding of friction by tactile mechanoreceptors - the key to fingertip force control during dexterous object manipulation by humans. Unmatched human ability to control the hand so that brittle objects are gently held without slipping, or being crushed by excessive force rely on sophisticated tactile sense in the fingertips. This project will record and analyse signals which human nerves are sending from fingertip receptors to the brain centres controlling hand actions.
The role of spike patterning in shaping human perception of tactile stimuli. Every touch sensation from our fingertips is conveyed to the brain through the nerves by means of electrical impulses similar to any digital device. Using unique technology developed in our lab we can intercept this neural communication and insert our own messages to test how these signals are interpreted and converted into perceptual experiences. We aim to reveal the rules by which timing of neural signal patterns shap ....The role of spike patterning in shaping human perception of tactile stimuli. Every touch sensation from our fingertips is conveyed to the brain through the nerves by means of electrical impulses similar to any digital device. Using unique technology developed in our lab we can intercept this neural communication and insert our own messages to test how these signals are interpreted and converted into perceptual experiences. We aim to reveal the rules by which timing of neural signal patterns shapes the perception of touch - specifically intensity and frequency of vibration. By recording signals from neurons and by testing human perception, we will learn about neural processing mechanisms. The new knowledge generated about sensory coding will be essential for rendering a virtual sense of touch.Read moreRead less
Tools for manipulating neuronal activity for behavioural studies. This project aims to develop optogenetic tools neuroscientists can use to better understand brain circuitry and the functional effects of specific neurons on behaviour. Linking the activity of individual neurons in the brain to specific behaviours is a major challenge in neuroscience. Optogenetics achieve this by using light to control the activity of neurons. This has advanced understanding of behaviour and neurocircuitry. This p ....Tools for manipulating neuronal activity for behavioural studies. This project aims to develop optogenetic tools neuroscientists can use to better understand brain circuitry and the functional effects of specific neurons on behaviour. Linking the activity of individual neurons in the brain to specific behaviours is a major challenge in neuroscience. Optogenetics achieve this by using light to control the activity of neurons. This has advanced understanding of behaviour and neurocircuitry. This project is expected to increase understanding of brain function at the cellular and system levels, and advance Australia’s multidisciplinary research capacity in neuroscience, cognitive sciences and nanobiotechnology to ultimately treat neurological disorders.Read moreRead less
ARC Centre of Excellence for Integrative Brain Function. The Centre of Excellence for Integrative Brain Function will address one of the greatest scientific challenges of the 21st century to understand how the brain works. We will investigate complex functions such as attention, prediction and decision-making, which require the coordination of information processing by many areas of the brain. This will require a highly collaborative approach involving neurobiologists, cognitive scientists, eng ....ARC Centre of Excellence for Integrative Brain Function. The Centre of Excellence for Integrative Brain Function will address one of the greatest scientific challenges of the 21st century to understand how the brain works. We will investigate complex functions such as attention, prediction and decision-making, which require the coordination of information processing by many areas of the brain. This will require a highly collaborative approach involving neurobiologists, cognitive scientists, engineers and physicists, allowing us to translate our discoveries into novel technologies for the social and economic benefit of all Australians. We will also train a new generation of multidisciplinary researchers, and contribute our expertise to a range of public education and awareness programs.Read moreRead less
The neuronal basis of visual consciousness: how brain rhythms control the doors of perception. Slow oscillatory brain wave activity may control the incoming flow of visual information from the world and modulate our perception. While recording neuronal activity directly from the brain, this project will modulate this rhythmic influence using novel visual illusions and brain stimulation techniques to control subjective visual perception.
Discovery Early Career Researcher Award - Grant ID: De200101468
Funder
Australian Research Council
Summary
Context matters: from sensory processing to decision making. Contextual modulation refers to prominent changes in the processing of information in brain and perception caused by interactions across space and time. Over the past two decades, an enormous amount of work has shown that spatial contextual effects occur throughout the sensory processing hierarchy. However, there has been little work examining how temporal context effects affect information processing and operate for high-level attribu ....Context matters: from sensory processing to decision making. Contextual modulation refers to prominent changes in the processing of information in brain and perception caused by interactions across space and time. Over the past two decades, an enormous amount of work has shown that spatial contextual effects occur throughout the sensory processing hierarchy. However, there has been little work examining how temporal context effects affect information processing and operate for high-level attributes of stimuli as well as interactions of self and environment. The project aims to fill this gap to further understand the nature and mechanisms of temporal contextual modulation on sensory information processing, perception, perceptual judgement and decision making at cellular, circuit and cognitive levels.Read moreRead less