How brain oscillations influence our behaviour. This project aims to reveal how sudden, intense stimuli impair or facilitate concurrent actions. Startling sounds can disrupt the execution of movements and distract attention from vital events in the environment, with potential disastrous consequences when handling complex equipment such as airplanes, cars and trucks, or surgical instruments. This project will combine classic experimental and novel neuro-modulatory techniques with the measurement ....How brain oscillations influence our behaviour. This project aims to reveal how sudden, intense stimuli impair or facilitate concurrent actions. Startling sounds can disrupt the execution of movements and distract attention from vital events in the environment, with potential disastrous consequences when handling complex equipment such as airplanes, cars and trucks, or surgical instruments. This project will combine classic experimental and novel neuro-modulatory techniques with the measurement of oscillatory brain activity. Expect outcomes will inform theories of cognitive function and the design of interventions to reduce the negative effects of sudden, distracting events.Read moreRead less
The structure and function of the human spinal connectome. This project will use complex network analysis to map the interactions between the brain and body, to understand how the central nervous system controls our movements. The project will provide fundamental insights into mechanisms that coordinate activity in the human motor system, and how the breakdown of coordination may lead to movement disorders. By integrating advanced computational analyses with state-of-the-art recording techniques ....The structure and function of the human spinal connectome. This project will use complex network analysis to map the interactions between the brain and body, to understand how the central nervous system controls our movements. The project will provide fundamental insights into mechanisms that coordinate activity in the human motor system, and how the breakdown of coordination may lead to movement disorders. By integrating advanced computational analyses with state-of-the-art recording techniques, the project will generate new knowledge of the neural basis of human motor coordination. Expected outcomes may support future applications to restore motor function through brain stimulation, prosthetics and robotics design.Read moreRead less
Revealing the beneficial effects of acoustic stimulation on the human brain. This project aims to provide greater understanding of the neural mechanisms by which initiation of motor responses can be improved by unexpected auditory stimulation. Initiating motor actions appears natural and effortless, but is underpinned by complex neural mechanisms that are not well understood. Using novel brain stimulation techniques, the project aims to assess the potential for properly timed strong sensory stim ....Revealing the beneficial effects of acoustic stimulation on the human brain. This project aims to provide greater understanding of the neural mechanisms by which initiation of motor responses can be improved by unexpected auditory stimulation. Initiating motor actions appears natural and effortless, but is underpinned by complex neural mechanisms that are not well understood. Using novel brain stimulation techniques, the project aims to assess the potential for properly timed strong sensory stimulation during movement preparation to induce neural plasticity and motor learning. This knowledge would have important implications across a number of fields, including neuroscience, sports science, and applied ergonomics.Read moreRead less
Determining the neural mechanisms of visual stimuli and motor responses. This project aims to determine how we select actions to visual cues rapidly, unconsciously and automatically. Learning associations between visual stimuli and motor responses is part of normal development and continues throughout life. Rapid deployment of these actions is often critical for safety yet we have limited knowledge of how the human brain does this. This project will use neuroimaging tools to characterise the spa ....Determining the neural mechanisms of visual stimuli and motor responses. This project aims to determine how we select actions to visual cues rapidly, unconsciously and automatically. Learning associations between visual stimuli and motor responses is part of normal development and continues throughout life. Rapid deployment of these actions is often critical for safety yet we have limited knowledge of how the human brain does this. This project will use neuroimaging tools to characterise the spatial and temporal neural architecture underlying these processes and determine how the dorsal and ventral streams of visual processing, specialised for motor control and recognition respectively, interact in vision-based actions as these actions become learned.Outcomes will provide new frameworks for driving improvement in any domain in which goal-directed actions depend on the rapid processing of visual information, including human-machine interfaces for defence, economic development, education, health, science and technology.Read moreRead less
Understanding the physiological changes accompanying arousal from sleep. This project aims to investigate neural memory in upper airway dilator muscles. Following brief awakening from sleep (arousal), upper airway dilator muscle activity is elevated for 20–30 seconds despite inhibitory stimuli being present. The cause for the elevated activity is unknown. This project aims to investigate whether a form of neural memory contributes to the elevated activity. It expects to demonstrate that arousal ....Understanding the physiological changes accompanying arousal from sleep. This project aims to investigate neural memory in upper airway dilator muscles. Following brief awakening from sleep (arousal), upper airway dilator muscle activity is elevated for 20–30 seconds despite inhibitory stimuli being present. The cause for the elevated activity is unknown. This project aims to investigate whether a form of neural memory contributes to the elevated activity. It expects to demonstrate that arousal can induce a neural memory that is not inhibited by usual stimuli. The findings are expected to increase our understanding of normal human functioning but may also have implications for conditions where upper airway muscles are important such as dysphagia, sleep apnea and numerous other sleep disorders.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: De120100653
Funder
Australian Research Council
Summary
The predictive brain and control of anticipatory actions. The ability to predict events in a dynamic environment is an important skill for survival as it can guide our actions when time pressures are severe. How predictions come about to guide our actions is not clear and project results will have great theoretical significance to understand how we generate them.
Revealing the beneficial effects of acoustic stimulation on the human brain. This project aims to provide greater understanding of the neural mechanisms by which initiation of motor responses can be improved by unexpected auditory stimulation. Initiating motor actions appears natural and effortless, but is underpinned by complex neural mechanisms that are not well understood. Using novel brain stimulation techniques, the project aims to assess the potential for properly timed strong sensory stim ....Revealing the beneficial effects of acoustic stimulation on the human brain. This project aims to provide greater understanding of the neural mechanisms by which initiation of motor responses can be improved by unexpected auditory stimulation. Initiating motor actions appears natural and effortless, but is underpinned by complex neural mechanisms that are not well understood. Using novel brain stimulation techniques, the project aims to assess the potential for properly timed strong sensory stimulation during movement preparation to induce neural plasticity and motor learning. This knowledge would have important implications across a number of fields, including neuroscience, sports science, and applied ergonomics.Read moreRead less
A new model of human speech production through computational modeling and human functional brain imaging. It is still largely a mystery how we convert our thoughts into fluent intelligible speech. This project will bring together experts in speech pathology, neuroscience, and computer modeling to create a new biologically-plausible model of speech production to advance understanding of speech development, ageing, and mechanisms of recovery after injury.
How brain oscillations influence our behaviour. This project aims to reveal how sudden, intense stimuli impair or facilitate concurrent actions. Startling sounds can disrupt the execution of movements and distract attention from vital events in the environment, with potential disastrous consequences when handling complex equipment such as airplanes, cars and trucks, or surgical instruments. This project will combine classic experimental and novel neuro-modulatory techniques with the measurement ....How brain oscillations influence our behaviour. This project aims to reveal how sudden, intense stimuli impair or facilitate concurrent actions. Startling sounds can disrupt the execution of movements and distract attention from vital events in the environment, with potential disastrous consequences when handling complex equipment such as airplanes, cars and trucks, or surgical instruments. This project will combine classic experimental and novel neuro-modulatory techniques with the measurement of oscillatory brain activity. Expect outcomes will inform theories of cognitive function and the design of interventions to reduce the negative effects of sudden, distracting events.Read moreRead less
Motor control of the upper airway muscle genioglossus. This project aims to evaluate a recent proposal about the motor control of the upper airway muscle Genioglossus. The upper airway muscles, the most complex in the human body, are critical for breathing and speaking, but are not well understood. Genioglossus draws the base of the tongue forward to maintain airway patency. This project will study genioglossus during wakefulness and sleep in normal healthy individuals. It is anticipated that th ....Motor control of the upper airway muscle genioglossus. This project aims to evaluate a recent proposal about the motor control of the upper airway muscle Genioglossus. The upper airway muscles, the most complex in the human body, are critical for breathing and speaking, but are not well understood. Genioglossus draws the base of the tongue forward to maintain airway patency. This project will study genioglossus during wakefulness and sleep in normal healthy individuals. It is anticipated that the project will suggest improved avenues for treatment of sleep related respiratory disorders.Read moreRead less