Hippocampal regulation of goal-directed decision-making. The hippocampus is a part of the brain that is central to learning and memory yet little is known about its role in decision-making. It is the aim of this application to provide the first detailed, causal evidence of hippocampal regulation of decision-making. This is significant because many mental health disorders and dementias that involve decision-making deficits are characterised by hippocampal dysfunction, but any direct link between ....Hippocampal regulation of goal-directed decision-making. The hippocampus is a part of the brain that is central to learning and memory yet little is known about its role in decision-making. It is the aim of this application to provide the first detailed, causal evidence of hippocampal regulation of decision-making. This is significant because many mental health disorders and dementias that involve decision-making deficits are characterised by hippocampal dysfunction, but any direct link between these factors is unknown. The outcomes of the current grant will provide the first evidence of that link, thus providing deeper understanding of the neurophysiological mechanisms of these disorders, which could eventuate in the creation of more beneficial treatments. Read moreRead less
How satiation control reward value and cue-induced appetitive behaviours. This proposal aims to identify mechanisms that control environment-driven food-seeking behaviours. It seeks to do so by using modern virally-mediated and basic behavioural as well as histological techniques in a transgenic rat to characterise novel hindbrain circuits that control these feeding behaviours. This is significant as environment-driven overeating is problematic yet underlying mechanisms are unclear. This project ....How satiation control reward value and cue-induced appetitive behaviours. This proposal aims to identify mechanisms that control environment-driven food-seeking behaviours. It seeks to do so by using modern virally-mediated and basic behavioural as well as histological techniques in a transgenic rat to characterise novel hindbrain circuits that control these feeding behaviours. This is significant as environment-driven overeating is problematic yet underlying mechanisms are unclear. This project expects to provide new knowledge on when, where and how hindbrain neurons control environment-driven food-seeking behaviours. This should provide benefits to the advancement of knowledge on the neural mechanisms of food-seeking and provide a basic science platform for future research on the study of feeding behaviours.
Read moreRead less
How do myelinating cells alter brain circuits to facilitate learning? This project aims to identify the brain circuits that receive new insulation and characterise the molecular mediators of this process. This project will apply innovative technologies to understand how the nervous system remains adaptable throughout life. This new knowledge, of the cellular mechanisms that allow brain circuits to remain adaptable throughout life, may have application in the development of interventions aimed at ....How do myelinating cells alter brain circuits to facilitate learning? This project aims to identify the brain circuits that receive new insulation and characterise the molecular mediators of this process. This project will apply innovative technologies to understand how the nervous system remains adaptable throughout life. This new knowledge, of the cellular mechanisms that allow brain circuits to remain adaptable throughout life, may have application in the development of interventions aimed at improving educational outcomes or counteracting age-related memory decline. Potential future benefits include facilitating the development of drugs to circumvent memory loss resulting from brain diseases, and improving the design of neuromorphic hardware for computing.Read moreRead less
Computational neuroanatomy: analysis of neural connections in the primate brain. This project will map the full network of connections between brain cells, using a computer graphics database that will consolidate data from hundreds of experiments. This will allow the first realistic simulations of neural activity, and will provide new insights about the structure and function of the nervous system.
Discovery Early Career Researcher Award - Grant ID: DE190101244
Funder
Australian Research Council
Funding Amount
$342,411.00
Summary
Unravelling the relationship between food and the brain. This project aims to investigate how highly palatable foods that are high in fat and sugar, interact with the brain to cause their overconsumption. Highly palatable foods cause plasticity in brain reward circuitry in a manner similar to drugs of abuse. Identifying how these "junk" foods interact with reward areas of the brain will explore the neural mechanisms underlying the hedonic nature of appetite. This project will not only inform our ....Unravelling the relationship between food and the brain. This project aims to investigate how highly palatable foods that are high in fat and sugar, interact with the brain to cause their overconsumption. Highly palatable foods cause plasticity in brain reward circuitry in a manner similar to drugs of abuse. Identifying how these "junk" foods interact with reward areas of the brain will explore the neural mechanisms underlying the hedonic nature of appetite. This project will not only inform our understanding of how exposure to these foods can contribute to overeating and obesity, a huge and growing problem in Australia, but will also provide evidence to inform policy options relevant to advertising and marketing of these foods.Read moreRead less
Special Research Initiatives - Grant ID: SR120300015
Funder
Australian Research Council
Funding Amount
$16,000,000.00
Summary
The Science of Learning Research Centre. In this innovative new Centre, researchers in education, neuroscience and cognitive psychology will work together with teachers to understand the learning process. This collaboration will establish new criteria to assess the impact of different types of learning and strategies to inform teaching practices of benefit to all Australians.
Mapping, recovery and remediation of arm coordination deficits after stroke. Coordination of arm movement is a significant problem after a stroke. This innovative project will underpin new treatments by focusing on what type of stroke causes difficulty in coordinating arm movement, describing the coordination difficulties in detail and investigating mechanisms of recovery and treatment.
The ageing brain: plasticity and training. This project will investigate how the capacity of a person's brain for reorganisation (plasticity) influences cognitive and motor function and training benefits in older adults. The findings will support new training initiatives to promote brain health and well-being across the lifespan.
The structure and function of the human spinal connectome. This project will use complex network analysis to map the interactions between the brain and body, to understand how the central nervous system controls our movements. The project will provide fundamental insights into mechanisms that coordinate activity in the human motor system, and how the breakdown of coordination may lead to movement disorders. By integrating advanced computational analyses with state-of-the-art recording techniques ....The structure and function of the human spinal connectome. This project will use complex network analysis to map the interactions between the brain and body, to understand how the central nervous system controls our movements. The project will provide fundamental insights into mechanisms that coordinate activity in the human motor system, and how the breakdown of coordination may lead to movement disorders. By integrating advanced computational analyses with state-of-the-art recording techniques, the project will generate new knowledge of the neural basis of human motor coordination. Expected outcomes may support future applications to restore motor function through brain stimulation, prosthetics and robotics design.Read moreRead less
Corpus callosum function in decision making. This project aims to investigate how the major connection between the two brain hemispheres (called the corpus callosum) is involved in higher cognitive functions such as decision making, learning, knowledge updating, and performance optimisation. New knowledge will be generated in the area of human cognition by combining computational theory with measures of cognition and brain MRI. Expected outcomes are to develop and advance computational models o ....Corpus callosum function in decision making. This project aims to investigate how the major connection between the two brain hemispheres (called the corpus callosum) is involved in higher cognitive functions such as decision making, learning, knowledge updating, and performance optimisation. New knowledge will be generated in the area of human cognition by combining computational theory with measures of cognition and brain MRI. Expected outcomes are to develop and advance computational models of human brain function and structure through interdisciplinary collaboration by combing theory and experimentation. Significant benefits will be to advance our understanding of the brain and enhance Australia's scientific capability through training and collaboration.Read moreRead less