Comprehending and modelling the workings of the animal brain. Truly understanding how the brain operates is a grand challenge of 21st century neuroscience. Progress toward this goal can be made through studying small-brained animals, like the honey bee. This project aims to use microscopy and pharmacology to analyse the neural mechanisms by which bees learn and classify complex things. This will enable the construction of a computational model of decision making in the bee brain. Analysing this ....Comprehending and modelling the workings of the animal brain. Truly understanding how the brain operates is a grand challenge of 21st century neuroscience. Progress toward this goal can be made through studying small-brained animals, like the honey bee. This project aims to use microscopy and pharmacology to analyse the neural mechanisms by which bees learn and classify complex things. This will enable the construction of a computational model of decision making in the bee brain. Analysing this model will test what is understood about the operation of the animal brain, and what simulates it. This project aims to reveal how neural circuits make complex decisions; establish key principles and foundational studies for comprehending larger more complex brains, and yield new approaches to machine learning.Read moreRead less
Computational neuroanatomy: analysis of neural connections in the primate brain. This project will map the full network of connections between brain cells, using a computer graphics database that will consolidate data from hundreds of experiments. This will allow the first realistic simulations of neural activity, and will provide new insights about the structure and function of the nervous system.
A role for sleep in optimising attention. All animal brains are prediction machines, which allows even tiny flies to effectively navigate complex environments. To predict what will happen next is important for guiding attention, but also for detecting anything surprising. This project aims to understand how prediction is optimized by sleep in Drosophila flies. We aim to use electrophysiology and calcium imaging to map visual prediction error signals across the fly brain, and then determine how g ....A role for sleep in optimising attention. All animal brains are prediction machines, which allows even tiny flies to effectively navigate complex environments. To predict what will happen next is important for guiding attention, but also for detecting anything surprising. This project aims to understand how prediction is optimized by sleep in Drosophila flies. We aim to use electrophysiology and calcium imaging to map visual prediction error signals across the fly brain, and then determine how genetically controlled delivery of sleep regulates the quality and distribution of these signals. This knowledge will benefit our understanding of how brains balance a capacity for prediction versus surprise, by examining how evolution has solved this difficult problem in the smallest brains.Read moreRead less
Neuro-ecology: information processing under natural conditions. Not enough is known about how sensory information is processed through the brain under natural environmental conditions. This project will shed light on how information processing changes with context and will help explain why even those animals with the smallest brains are much more versatile and robust than our most advanced robots.
Navigating brains: the neurobiology of spatial cognition. Navigation is one of the most crucial and most challenging problems animals face. Behavioural analyses have shown that animals make use of a number of different mechanisms to navigate, but very little is known of how different forms of spatial information are processed and integrated by the brain. The project aims to tackle this by placing tethered ants in a virtual-reality simulation of their real environment allowing precise control of ....Navigating brains: the neurobiology of spatial cognition. Navigation is one of the most crucial and most challenging problems animals face. Behavioural analyses have shown that animals make use of a number of different mechanisms to navigate, but very little is known of how different forms of spatial information are processed and integrated by the brain. The project aims to tackle this by placing tethered ants in a virtual-reality simulation of their real environment allowing precise control of visual navigational cues, as well as the opportunity to study the brains of the tethered ants as they solve the real-world challenge of finding home. This may reveal how simple brains efficiently solve navigational tasks, which may inform both cognitive biology and bio-inspired computation.Read moreRead less
Understanding the mechanisms underpinning complex sociality. This project aims to investigate the mechanisms underlying the formation of complex social systems in vertebrates. Our understanding of these mechanisms is strongly biased towards a few model systems. We have identified a novel Australian model system with a wide range of sociality for this purpose. This project expects to generate new knowledge on how the social environment interacts with the brain during social organisation. Expected ....Understanding the mechanisms underpinning complex sociality. This project aims to investigate the mechanisms underlying the formation of complex social systems in vertebrates. Our understanding of these mechanisms is strongly biased towards a few model systems. We have identified a novel Australian model system with a wide range of sociality for this purpose. This project expects to generate new knowledge on how the social environment interacts with the brain during social organisation. Expected outcomes include the refinement of social theory and capacity building via international collaboration and postgraduate training. This work will provide significant benefits by increasing our understanding of how the brain and social environment interact to moderate aggression and enhance social associations.Read moreRead less
Life or death decisions: making fast, accurate choices in a complex world. This project aims to understand how hoverflies and honey bees, with tiny brains and sensory systems, excel at making fast and accurate decisions while on the fly in a complex world. The project will combine brain recordings with flight analyses and computational modelling to generate new knowledge on how animals may utilize movements to simplify information sampling. Expected outcomes are a novel, comprehensive understand ....Life or death decisions: making fast, accurate choices in a complex world. This project aims to understand how hoverflies and honey bees, with tiny brains and sensory systems, excel at making fast and accurate decisions while on the fly in a complex world. The project will combine brain recordings with flight analyses and computational modelling to generate new knowledge on how animals may utilize movements to simplify information sampling. Expected outcomes are a novel, comprehensive understanding of how animal movements could enhance decision speed and accuracy. This should provide substantial benefits for neuroscience, and for enhancing performance of autonomous robotic systems operating in challenging environments, such as disaster relief, mining and remote exploration. Read moreRead less
Closing the loop between salience and brain activity. This project aims to understand how animals exposed to an abundance of highly complex information decide what to attend to, that is, how they determine visual saliency. The project will approach this question by systematically tracking visual decision-making in the smallest animal brains, in closed-loop virtual reality environment. This approach will uncover basic working principles applicable to any system that needs to pay attention in a vi ....Closing the loop between salience and brain activity. This project aims to understand how animals exposed to an abundance of highly complex information decide what to attend to, that is, how they determine visual saliency. The project will approach this question by systematically tracking visual decision-making in the smallest animal brains, in closed-loop virtual reality environment. This approach will uncover basic working principles applicable to any system that needs to pay attention in a visually cluttered world, from insects to humans or autonomous vehicles.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE190100157
Funder
Australian Research Council
Funding Amount
$416,134.00
Summary
Involvement of the claustrum in coordinating brain circuits. This project aims to reveal how the claustrum coordinates information flow across other brain areas. The project will test the hypothesis that the Claustrum, a structure in the brain’s temporal lobe, coordinates the brains resting state networks. The project expects to characterise how the claustrum interacts with different networks, using a combination of anatomical, physiological and mathematical analysis techniques. The project expe ....Involvement of the claustrum in coordinating brain circuits. This project aims to reveal how the claustrum coordinates information flow across other brain areas. The project will test the hypothesis that the Claustrum, a structure in the brain’s temporal lobe, coordinates the brains resting state networks. The project expects to characterise how the claustrum interacts with different networks, using a combination of anatomical, physiological and mathematical analysis techniques. The project expects to advance knowledge about the function of one of the least understood parts of the brain. This will provide benefits that include new analysis techniques for integrative brain function, and may form the basis of future biotechnologies for modulating brain activity using neuroengineering or pharmacological approaches.Read moreRead less
Understanding complex networks of connections in the primate cerebral cortex. The most fundamental characteristic of brain cells is that they can interchange information through electrical pulses, which run along cable-like membrane specialisations. This creates a hugely complex network of cell-to-cell connections. Understanding this network is necessary to allow new insights on how the brain works as an integrated system, and on how information processing in the brain changes as result of disea ....Understanding complex networks of connections in the primate cerebral cortex. The most fundamental characteristic of brain cells is that they can interchange information through electrical pulses, which run along cable-like membrane specialisations. This creates a hugely complex network of cell-to-cell connections. Understanding this network is necessary to allow new insights on how the brain works as an integrated system, and on how information processing in the brain changes as result of diseases and normal ageing. This project will produce the first comprehensive digital map of the connections in a primate brain. This project will use advanced statistical techniques to determine how to best subdivide the brain into processing nodes, and the logic behind the network of connections that integrates these nodes. Read moreRead less