Discovery Early Career Researcher Award - Grant ID: DE230100401
Funder
Australian Research Council
Funding Amount
$393,903.00
Summary
Deconstructing the brain circuits of reward-seeking. This project aims to deconstruct the brain circuits that shape reward-seeking behaviour in different environments. The anticipated significance of this project is to provide mechanistic insights into why we choose to seek rewards in safe, but not dangerous environments. Expected outcomes include answering fundamental questions about how the environment shapes our behaviour by identifying projection cell subtypes important for reward-seeking, c ....Deconstructing the brain circuits of reward-seeking. This project aims to deconstruct the brain circuits that shape reward-seeking behaviour in different environments. The anticipated significance of this project is to provide mechanistic insights into why we choose to seek rewards in safe, but not dangerous environments. Expected outcomes include answering fundamental questions about how the environment shapes our behaviour by identifying projection cell subtypes important for reward-seeking, characterising their neuronal activity and precisely defining their molecular phenotype. The benefits of this project are expected to provide a new knowledge base for understanding decision-making in a constantly changing world.Read moreRead less
What determines plant sensitivity to heat?: Individual to lifetime impacts. Temperature is a major determinant of the distribution of species and yet the capacity to predict the thermal sensitivity of plants is extremely limited. How vulnerability varies as a plant grows from seed to adult and produces more seed is a key question. Whether chronic warming exacerbates or ameliorates effects of extreme events, e.g. triggering the plant to enlist defensive strategies, is also an open question. This ....What determines plant sensitivity to heat?: Individual to lifetime impacts. Temperature is a major determinant of the distribution of species and yet the capacity to predict the thermal sensitivity of plants is extremely limited. How vulnerability varies as a plant grows from seed to adult and produces more seed is a key question. Whether chronic warming exacerbates or ameliorates effects of extreme events, e.g. triggering the plant to enlist defensive strategies, is also an open question. This project will advance fundamental understanding of how thermal tolerance varies across species and over the plant life cycle and how it scales demographically to lifetime vulnerability. The work will yield a significant advance in our capacity to predict impacts of extreme heat events on plant performance and distribution.
Read moreRead less
Origin and evolution of animal-bacterial symbiosis. This project seeks to understand how interactions between animals and their microbial symbionts – the holobiont – evolved, and how they are influenced by the environment over an animal's life. Using a homegrown Australian model, a sea sponge from the Great Barrier Reef, and advanced multi-omic approaches (genomics plus cell biology), this project aims to uncover the mechanisms underlying the establishment and maintenance of the holobiont throug ....Origin and evolution of animal-bacterial symbiosis. This project seeks to understand how interactions between animals and their microbial symbionts – the holobiont – evolved, and how they are influenced by the environment over an animal's life. Using a homegrown Australian model, a sea sponge from the Great Barrier Reef, and advanced multi-omic approaches (genomics plus cell biology), this project aims to uncover the mechanisms underlying the establishment and maintenance of the holobiont through development, and under changing ecological and environmental conditions. Because of the evolutionary position of sponges, outcomes of this project expect to reveal cardinal rules governing animal-microbe interactions that are fundamental to the health and conservation of most animals and ecosystems.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE230101231
Funder
Australian Research Council
Funding Amount
$390,295.00
Summary
The effect of nutrition on male life history traits in humans. This project will provide answers to fundamental questions in evolutionary biology while identifying diet compositions that will benefit human health and well-being. Using a longitudinal public-health database, the Raine Study, and a theoretical framework from the field of Nutritional Ecology, the project will provide new knowledge on how nutrition affects key life-history traits in humans including immune function, reproductive heal ....The effect of nutrition on male life history traits in humans. This project will provide answers to fundamental questions in evolutionary biology while identifying diet compositions that will benefit human health and well-being. Using a longitudinal public-health database, the Raine Study, and a theoretical framework from the field of Nutritional Ecology, the project will provide new knowledge on how nutrition affects key life-history traits in humans including immune function, reproductive health, physical appearance, and healthy ageing. A systematic literature review on how diet impacts these life-history traits in animals generally, and an experimental study of the effect of diet on health and reproduction in the house mouse (a lab analog species for humans) will complement the Raine Study findings.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE230100700
Funder
Australian Research Council
Funding Amount
$429,449.00
Summary
A novel bacterial secretion system for applications in nanobiotechnology. This project aims to characterise a new molecular machine, called the S-Pump. Molecular machines drive the complex biology in all cells and are an exciting area of translational research, with broad potential for industrial applications. This project expects to provide fundamental insights into how bacterial S-Pumps contribute to antimicrobial resistance and enhancing food production. Expected outcomes include new tools fo ....A novel bacterial secretion system for applications in nanobiotechnology. This project aims to characterise a new molecular machine, called the S-Pump. Molecular machines drive the complex biology in all cells and are an exciting area of translational research, with broad potential for industrial applications. This project expects to provide fundamental insights into how bacterial S-Pumps contribute to antimicrobial resistance and enhancing food production. Expected outcomes include new tools for molecular machine discovery and identification of ways to adapt molecular machines for biotechnological applications. This work should enhance Australia-UK ties through collaboration, provide benefits toward nanobiotechnology and economic benefits through more efficient food production.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE230101315
Funder
Australian Research Council
Funding Amount
$461,154.00
Summary
The dynamic interplay between the matrix and cell fate in developing heart. Malformations in the developing heart can lead to catastrophic defects and embryonic loss. The valves play a critical role in blood flow regulation and are made of a stratified matrix that is laid down early in development. This project aims to determine how the cellular fate of the early valve cells establish the layered matrix and in turn how the matrix can influence cell fate by utilising a multi-omics approach to ide ....The dynamic interplay between the matrix and cell fate in developing heart. Malformations in the developing heart can lead to catastrophic defects and embryonic loss. The valves play a critical role in blood flow regulation and are made of a stratified matrix that is laid down early in development. This project aims to determine how the cellular fate of the early valve cells establish the layered matrix and in turn how the matrix can influence cell fate by utilising a multi-omics approach to identify unique cell populations and integrate transcriptional and protein changes during matrix disruption. This project expects to generate fundamental knowledge on how matrix structure can influence cell fate in the valves and will advance Australia's knowledge base and research capabilities in developmental biology.Read moreRead less
Next-generation computational models to understand human joints . This project aims to investigate human joint systems through combining state-of-the-art imaging and high-fidelity biomechanical models. The methods developed in this project are expected to generate new ways of studying the dynamic response of musculoskeletal tissues to activity, including how musculoskeletal physiology can adapt to biomechanical stimuli. Expected outcomes include establishing a non-invasive method for characteris ....Next-generation computational models to understand human joints . This project aims to investigate human joint systems through combining state-of-the-art imaging and high-fidelity biomechanical models. The methods developed in this project are expected to generate new ways of studying the dynamic response of musculoskeletal tissues to activity, including how musculoskeletal physiology can adapt to biomechanical stimuli. Expected outcomes include establishing a non-invasive method for characterising whole joint systems. This project will provide significant knowledge gain on the biomechanical regulation of human joints across form, function, dynamics and loading which may help across many facets of society to guide physical activity choices.Read moreRead less
Statistical Methods for Next Generation Genome-Wide Association Studies. This project aims to develop cutting-edge statistical methods to analyse large genomic datasets and identify genetic variants associated with inter-individual differences in various human traits. Knowledge of trait-associated DNA variants is instrumental in understanding how natural selection has shaped human traits. By integrating genomic data from diverse and underrepresented populations, this project further expects to c ....Statistical Methods for Next Generation Genome-Wide Association Studies. This project aims to develop cutting-edge statistical methods to analyse large genomic datasets and identify genetic variants associated with inter-individual differences in various human traits. Knowledge of trait-associated DNA variants is instrumental in understanding how natural selection has shaped human traits. By integrating genomic data from diverse and underrepresented populations, this project further expects to contribute to the equitable use of genomic technologies in humans, regardless of geographical origins. Expected outcomes of this research include novel analysis methods and software tools, which should broadly and significantly benefit gene discovery in other species, including those of agricultural relevance.Read moreRead less
Neural circuit control of effort under stress . This Project aims to investigate how the ‘decision’ to persist in exerting effort to obtain a reward is encoded in the the brain and affected by stress. This work will generate new knowledge on the neural mechanisms through which stress modifies neural activity to control decision making processes underpinning adaptive behaviours essential for survival. The expected outcomes of this work include enhanced capacity at the interface of behavioural a ....Neural circuit control of effort under stress . This Project aims to investigate how the ‘decision’ to persist in exerting effort to obtain a reward is encoded in the the brain and affected by stress. This work will generate new knowledge on the neural mechanisms through which stress modifies neural activity to control decision making processes underpinning adaptive behaviours essential for survival. The expected outcomes of this work include enhanced capacity at the interface of behavioural and computational neuroscience, that will in turn provide significant benefits through greater insight into brain functions essential for survival, with long ranging implications for performance optimisation and brain-inspired computing. Read moreRead less
Australian Laureate Fellowships - Grant ID: FL230100100
Funder
Australian Research Council
Funding Amount
$3,300,000.00
Summary
Forces in Nature: Tissue mechanics and cell sociology. Epithelial cells cover surfaces in the body, forming a shield to protect us from the environment. Despite their importance, we understand poorly how the cells communicate. This project aims to test the novel concept that epithelial cells communicate via transmission and detection of mechanical forces, using an innovative combination of cellular and biophysical experiments and physical theory. The expected outcomes are new knowledge, interdis ....Forces in Nature: Tissue mechanics and cell sociology. Epithelial cells cover surfaces in the body, forming a shield to protect us from the environment. Despite their importance, we understand poorly how the cells communicate. This project aims to test the novel concept that epithelial cells communicate via transmission and detection of mechanical forces, using an innovative combination of cellular and biophysical experiments and physical theory. The expected outcomes are new knowledge, interdisciplinary training for young scientists, new national research capacity and growing international collaborations. Benefits include enhancing Australia’s scientific linkages and research capacity and providing fundamental knowledge that could lead to future advances in bioengineering and drug discovery. Read moreRead less