Interactions between linear and interfacial crystalline defects and their impact on mechanical properties in nanostructured metals and alloys. The project aims to apply in-situ deformation transmission electron microscopy to investigate the interactions among crystalline defects in nanostructured metallic materials and to explore the effect of the interactions on mechanical properties. The results will guide the structural design of nanomaterials with superior mechanical properties.
Structure-property relationships in compositionally complex alloys. Physical metallurgy has entered a new era of compositionally complex metallic alloys that show unprecedented combinations of mechanical properties enabling the design of more energy-efficient and economically viable applications. This project aims to generate new knowledge about how locally-resolved, nano-scale atomic arrangements control macroscopic deformation behavior in these materials and develop a fundamental understanding ....Structure-property relationships in compositionally complex alloys. Physical metallurgy has entered a new era of compositionally complex metallic alloys that show unprecedented combinations of mechanical properties enabling the design of more energy-efficient and economically viable applications. This project aims to generate new knowledge about how locally-resolved, nano-scale atomic arrangements control macroscopic deformation behavior in these materials and develop a fundamental understanding of their processing-structure-fracture toughness relationships. Expected outcomes include an enhanced capacity to design materials with damage-tolerant properties superior to existing alloys from bottom up, thereby allowing for commercial benefits throughout transportation, defense, and biomedical device sectors.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE150100123
Funder
Australian Research Council
Funding Amount
$190,000.00
Summary
Quench and deformation dilatometer for studying phase transformations. Quench and deformation dilatometer for studying phase transformations: The quenching and deformation dilatometer is a high precision thermal analysis tool used to measure phase transformations in situ. This technique can make time-resolved measurements of transformations under the extreme conditions of heating, cooling and deformation that are experienced during industrial processing. This instrument will be the only one in A ....Quench and deformation dilatometer for studying phase transformations. Quench and deformation dilatometer for studying phase transformations: The quenching and deformation dilatometer is a high precision thermal analysis tool used to measure phase transformations in situ. This technique can make time-resolved measurements of transformations under the extreme conditions of heating, cooling and deformation that are experienced during industrial processing. This instrument will be the only one in Australia capable of temperature changes above 2000 degrees Celsius and will also be the only one equipped with a cryogenic module. The instrument is intended to be used to characterise new processing technologies and new alloy systems such as advanced high strength steels, age hardenable magnesium, high entropy alloys, and cluster hardening aluminium alloys.Read moreRead less
Ultrahigh strength maraging titanium alloys for additive manufacturing . This project aims to pioneer an unprecedented class of ultrahigh-strength titanium alloys for 3D printing by capitalising on both the alloy design theory of ultrahigh-strength steels and the unique capability of laser-based 3D printing. The planned research expects to significantly advance the knowledge base of advanced metallic materials and metal 3D printing via atomistic level characterisation and systematic mechanical p ....Ultrahigh strength maraging titanium alloys for additive manufacturing . This project aims to pioneer an unprecedented class of ultrahigh-strength titanium alloys for 3D printing by capitalising on both the alloy design theory of ultrahigh-strength steels and the unique capability of laser-based 3D printing. The planned research expects to significantly advance the knowledge base of advanced metallic materials and metal 3D printing via atomistic level characterisation and systematic mechanical property evaluation in relation to specifically tailored 3D printing conditions. Expected outcomes include a group of ultrahigh-strength novel titanium alloys for 3D printing and a new alloy design theory. This should provide significant benefits to the manufacturing industry to support the national economy and security.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE140100012
Funder
Australian Research Council
Funding Amount
$890,000.00
Summary
Dual Column-Focused Ion Beam/Scanning Electron Microscope facility for Queensland. Dual column focused ion beam/scanning electron microscope facility: This facility will precisely cut specimens and surfaces that can be imaged in a variety of ways, including crystallographic and elemental space, of particular use for physical scientists, as well as biological specimens. This instrument will provide information at resolutions between optical and transmission electron microscopy, images that will ....Dual Column-Focused Ion Beam/Scanning Electron Microscope facility for Queensland. Dual column focused ion beam/scanning electron microscope facility: This facility will precisely cut specimens and surfaces that can be imaged in a variety of ways, including crystallographic and elemental space, of particular use for physical scientists, as well as biological specimens. This instrument will provide information at resolutions between optical and transmission electron microscopy, images that will effectively provide the biologist with the ability to develop the complete correlative picture of organelles and cells. The instrument will also provide a much needed resource for researchers across disciplines such as physics, chemistry, biology, geology and engineering.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE140100156
Funder
Australian Research Council
Funding Amount
$250,000.00
Summary
Advanced Laser Additive Manufacturing System for Extended Applications to Surface Engineering, Direct Manufacturing and New Alloy Development. Advanced laser additive manufacturing system for extended applications to surface engineering, direct manufacturing and new alloy development: This project will provide an advanced laser additive manufacturing system for extended applications. Although the facility was originally designed for forefront additive manufacturing, it enables innovative resear ....Advanced Laser Additive Manufacturing System for Extended Applications to Surface Engineering, Direct Manufacturing and New Alloy Development. Advanced laser additive manufacturing system for extended applications to surface engineering, direct manufacturing and new alloy development: This project will provide an advanced laser additive manufacturing system for extended applications. Although the facility was originally designed for forefront additive manufacturing, it enables innovative research on surface engineering to solve the long standing corrosion and wear problems associated with metal components and to produce biomedical coatings on titanium implants. The facility can also be used to develop high quality alloys, including titanium and magnesium alloys, through an accelerated metallurgy approach, leading to breakthrough progress in metal research. Such alloys are highly desired by automotive and aerospace industries to improve fuel efficiency through weight reduction. Read moreRead less
Origin and impact of solute clustering in light alloys. This project is designed to provide a physical metallurgy platform for understanding and interpreting the role of clusters of micro-alloying elements in precipitation in light alloys and aiding new alloy development. Phase transformations play an important role in determining the mechanical properties of many engineering materials. Understanding the origin and impact of solute clustering in phase transformations is crucial for achieving unp ....Origin and impact of solute clustering in light alloys. This project is designed to provide a physical metallurgy platform for understanding and interpreting the role of clusters of micro-alloying elements in precipitation in light alloys and aiding new alloy development. Phase transformations play an important role in determining the mechanical properties of many engineering materials. Understanding the origin and impact of solute clustering in phase transformations is crucial for achieving unprecedented properties in these materials. This project plans to combine atomic-scale characterisation and multi-scale computation to reveal the geometry and energetics of solute clusters and cluster-assisted nucleation in light alloys based on aluminium and magnesium. Applications may include the development of stronger and less costly metallic materials for the aerospace, aircraft and automotive industries.Read moreRead less
The design of new die-castable bulk metallic glasses exhibiting superior mechanical performance. The most dramatic illustration of non-equilibrium processing of a metal is the formation of an amorphous solid that can possess physical and/or functional properties superior to its equilibrium crystalline counterpart. This project will generate new types of net-shape-processed amorphous alloys with an excellent combination of properties.
Discovery Early Career Researcher Award - Grant ID: DE200101105
Funder
Australian Research Council
Funding Amount
$423,856.00
Summary
Probing the nanomechanics of single grain boundary with decorated solutes. Grain boundaries (GBs) are thermodynamically susceptible to attract solutes to reduce system energy. Elaborately manipulating the GB nanostructure and chemistry via segregation can essentially be conducive, rather than detrimental, to materials performance. However, the underlying mechanism of GB segregation and its detailed effect on material properties remain elusive due to the GB complexities in the polycrystals. Throu ....Probing the nanomechanics of single grain boundary with decorated solutes. Grain boundaries (GBs) are thermodynamically susceptible to attract solutes to reduce system energy. Elaborately manipulating the GB nanostructure and chemistry via segregation can essentially be conducive, rather than detrimental, to materials performance. However, the underlying mechanism of GB segregation and its detailed effect on material properties remain elusive due to the GB complexities in the polycrystals. Through correlative in-situ nanomechanical testing and atom probe tomography, this project aims to unravel the rationale of segregation behaviour of individual GBs and its effectiveness to enhance the material performance, and hence enable nanostructural design of advanced metallic materials with unprecedented properties.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE210100025
Funder
Australian Research Council
Funding Amount
$468,000.00
Summary
Electron microscopy facilities for in-situ materials characterisation. This project aims to significantly strengthen our national capability in high resolution in-situ transmission electron microscopy through the introduction of special in-situ specimen holders and an imaging detector. The project expects to advance knowledge critical for the design of advanced materials with outstanding properties. Expected outcomes of this project will provide critical support for thorough understanding of how ....Electron microscopy facilities for in-situ materials characterisation. This project aims to significantly strengthen our national capability in high resolution in-situ transmission electron microscopy through the introduction of special in-situ specimen holders and an imaging detector. The project expects to advance knowledge critical for the design of advanced materials with outstanding properties. Expected outcomes of this project will provide critical support for thorough understanding of how the microstructures of materials affect their mechanical, thermal, electrical, and magnetic properties and will facilitate strategic collaborations among Australian scientists. This should promote Australia’s global leadership in materials research and advanced manufacturing.Read moreRead less