Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100188
Funder
Australian Research Council
Funding Amount
$1,000,000.00
Summary
Epitaxial growth facility for advanced materials. An advanced materials fabrication facility accessible to all Australian researchers will be established. This will allow crystal growth at the atomic level for novel materials with applications including fundamental physics, nanocomposites, energy storage and conversion systems, and solar cells.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100126
Funder
Australian Research Council
Funding Amount
$150,000.00
Summary
An integrated kinetic measurement system enabling efficient solar energy conversion. This measurement facility will underpin advances in the fundamental understanding of new semiconducting materials for high efficiency light-driven energy conversion systems. The outcomes of the research at the facility will lead to significant economic and environmental benefits for many industries, such as low cost solar cells and water purifications.
High Performance Monolithic Perovskite Photocapacitors. Monolithic perovskite photocapacitor (MPPC) consisted of integrated energy harvesting perovskite solar cell and energy storage supercapacitor through an internally shared electrode can deliver stable electricity by harnessing solar energy. The performance of MPPC is dependent of properties of the shared electrode materials. This project aims to synthesis carbon materials with tailored surface, electrical and structure properties that are re ....High Performance Monolithic Perovskite Photocapacitors. Monolithic perovskite photocapacitor (MPPC) consisted of integrated energy harvesting perovskite solar cell and energy storage supercapacitor through an internally shared electrode can deliver stable electricity by harnessing solar energy. The performance of MPPC is dependent of properties of the shared electrode materials. This project aims to synthesis carbon materials with tailored surface, electrical and structure properties that are required to make a highly functioning shared electrode in MPPC. The goal is to fabricate stable, high performance MPPC. Successful achievement of the outcomes will enable cost-effective, reliable, solar electricity, placing Australia at the forefront of exploiting photovoltaics technologies.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100164
Funder
Australian Research Council
Funding Amount
$680,000.00
Summary
Dynamic phase behaviour characterisation facility for nanostructured interfaces and solids. This infrastructure will increase our understanding of interfacial phenomena of nanostructured materials over very short periods of time. This new understanding will allow optimisation of the correlation of the chemistry of a material to the properties of that material. The infrastructure will enhance Australia's capabilities in creating new materials relevant to electronics, medicine, the environment and ....Dynamic phase behaviour characterisation facility for nanostructured interfaces and solids. This infrastructure will increase our understanding of interfacial phenomena of nanostructured materials over very short periods of time. This new understanding will allow optimisation of the correlation of the chemistry of a material to the properties of that material. The infrastructure will enhance Australia's capabilities in creating new materials relevant to electronics, medicine, the environment and security technologies.Read moreRead less
Wet Particulate Materials - Flow or Fracture? Most advanced materials are produced from starting materials in the form of fine particles. Powders, especially in ceramic engineering, are first processed wet into near-final shape. Improved understanding of the fracture of particle networks is critical in order to process nano-sized advanced ceramic materials for use in solar energy harvesting and extreme heat engine applications as well as minimising drying cracks in paints and coatings. The resea ....Wet Particulate Materials - Flow or Fracture? Most advanced materials are produced from starting materials in the form of fine particles. Powders, especially in ceramic engineering, are first processed wet into near-final shape. Improved understanding of the fracture of particle networks is critical in order to process nano-sized advanced ceramic materials for use in solar energy harvesting and extreme heat engine applications as well as minimising drying cracks in paints and coatings. The research aims to identify the fundamental link between particle network strength and structure and the fracture of wet powder bodies. The microscopic mechanisms that control the behaviour will be investigated with a particular focus on toughening mechanisms including the influence of plasticity.Read moreRead less
Anodisation methods and materials for solar water splitting. This project aims to convert and chemically store solar energy as hydrogen. Photoactive materials could harness solar energy. With fabrication methods, these thin films often suffer from poor charge transport and stability, hindering their wider application. Fabrication by anodization could potentially overcome these problems. This project will develop thin film fabrication methods based on anodization that synthesise robust, nanostruc ....Anodisation methods and materials for solar water splitting. This project aims to convert and chemically store solar energy as hydrogen. Photoactive materials could harness solar energy. With fabrication methods, these thin films often suffer from poor charge transport and stability, hindering their wider application. Fabrication by anodization could potentially overcome these problems. This project will develop thin film fabrication methods based on anodization that synthesise robust, nanostructured films with efficient compositions and structures. This will lead to photoelectrodes for efficient solar hydrogen generation, crucial for a sustainable energy future. It will also develop general design principles for photoelectrodes for devices.Read moreRead less
Nanostructuring and nanocharacterisation of organic semiconductor devices. This research project will utilise new approaches to pattern organic solar cells on the nanoscale to realise improved efficiencies and improved understanding of device operation. It will also develop soft x-ray techniques to probe the nanostructure of organic semiconductor films with increased chemical and interfacial specificity.
Defect control for high-performance green kesterites energy materials. This project will tackle the fundamental challenge of defect control of the quaternary compound kesterite, revolutionizing the way we can understand the hidden defect-evolution process and design accordingly effective defect-control approaches. This will be realized by a systematic approach integrating multiscale materials characterization, process and materials modeling, and linking microscopic local chemical potential and m ....Defect control for high-performance green kesterites energy materials. This project will tackle the fundamental challenge of defect control of the quaternary compound kesterite, revolutionizing the way we can understand the hidden defect-evolution process and design accordingly effective defect-control approaches. This will be realized by a systematic approach integrating multiscale materials characterization, process and materials modeling, and linking microscopic local chemical potential and macroscopic processing conditions, and associated compound properties and device performance to control defects evolution. Successfully achieved, this project will realize full potential of kesterite in photovoltaic and photoelectrochemical applications, and leading to new discoveries in other compound energy materials.Read moreRead less
Industrially Viable Routes for fabrication of Perovskite Solar Cells. Photovoltaic technology based on perovskite solar cell (PSC) is predicated to account for USD34.8 billion by 2027 in the global market. The current synthesis protocol using detrimental solvent for perovskite formation and the unsatisfactory stability of perovskite are two key barriers for commercial production of PSC. This project aims to develop new synthesis methods for stable perovskite materials in solar cells by utilizing ....Industrially Viable Routes for fabrication of Perovskite Solar Cells. Photovoltaic technology based on perovskite solar cell (PSC) is predicated to account for USD34.8 billion by 2027 in the global market. The current synthesis protocol using detrimental solvent for perovskite formation and the unsatisfactory stability of perovskite are two key barriers for commercial production of PSC. This project aims to develop new synthesis methods for stable perovskite materials in solar cells by utilizing green solvents that are viable for large scale production. The anticipated outcomes including industrially compatible material synthesis methods for efficient, stable PSC will significantly advance the manufacture capability and competitiveness of the industrial partner in this important area.Read moreRead less
Metal Halide Perovskite Metal-organic Framework Crystal-Glass Composites. This project aims to investigate the highly stable and efficient semiconductive composite materials, recently discovered by my group, consisting of metal halide perovskite embedded in metal-organic framework glass. An integrated experimental and computational approach will be used to study the structures and interfacial bonding mechanisms that govern the highly sought-after properties for the composites. Expected outcomes ....Metal Halide Perovskite Metal-organic Framework Crystal-Glass Composites. This project aims to investigate the highly stable and efficient semiconductive composite materials, recently discovered by my group, consisting of metal halide perovskite embedded in metal-organic framework glass. An integrated experimental and computational approach will be used to study the structures and interfacial bonding mechanisms that govern the highly sought-after properties for the composites. Expected outcomes are a new generation of environmentally safe perovskite devices for energy, environmental and health applications, e.g. lighting, displays, X-ray sensing, photocatalysis and photovoltaics. This project will position Australia at the forefront of semiconducting device research and create commercial opportunities. Read moreRead less