Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100188
Funder
Australian Research Council
Funding Amount
$1,000,000.00
Summary
Epitaxial growth facility for advanced materials. An advanced materials fabrication facility accessible to all Australian researchers will be established. This will allow crystal growth at the atomic level for novel materials with applications including fundamental physics, nanocomposites, energy storage and conversion systems, and solar cells.
Industrially Viable Routes for fabrication of Perovskite Solar Cells. Photovoltaic technology based on perovskite solar cell (PSC) is predicated to account for USD34.8 billion by 2027 in the global market. The current synthesis protocol using detrimental solvent for perovskite formation and the unsatisfactory stability of perovskite are two key barriers for commercial production of PSC. This project aims to develop new synthesis methods for stable perovskite materials in solar cells by utilizing ....Industrially Viable Routes for fabrication of Perovskite Solar Cells. Photovoltaic technology based on perovskite solar cell (PSC) is predicated to account for USD34.8 billion by 2027 in the global market. The current synthesis protocol using detrimental solvent for perovskite formation and the unsatisfactory stability of perovskite are two key barriers for commercial production of PSC. This project aims to develop new synthesis methods for stable perovskite materials in solar cells by utilizing green solvents that are viable for large scale production. The anticipated outcomes including industrially compatible material synthesis methods for efficient, stable PSC will significantly advance the manufacture capability and competitiveness of the industrial partner in this important area.Read moreRead less
High Performance Monolithic Perovskite Photocapacitors. Monolithic perovskite photocapacitor (MPPC) consisted of integrated energy harvesting perovskite solar cell and energy storage supercapacitor through an internally shared electrode can deliver stable electricity by harnessing solar energy. The performance of MPPC is dependent of properties of the shared electrode materials. This project aims to synthesis carbon materials with tailored surface, electrical and structure properties that are re ....High Performance Monolithic Perovskite Photocapacitors. Monolithic perovskite photocapacitor (MPPC) consisted of integrated energy harvesting perovskite solar cell and energy storage supercapacitor through an internally shared electrode can deliver stable electricity by harnessing solar energy. The performance of MPPC is dependent of properties of the shared electrode materials. This project aims to synthesis carbon materials with tailored surface, electrical and structure properties that are required to make a highly functioning shared electrode in MPPC. The goal is to fabricate stable, high performance MPPC. Successful achievement of the outcomes will enable cost-effective, reliable, solar electricity, placing Australia at the forefront of exploiting photovoltaics technologies.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100126
Funder
Australian Research Council
Funding Amount
$150,000.00
Summary
An integrated kinetic measurement system enabling efficient solar energy conversion. This measurement facility will underpin advances in the fundamental understanding of new semiconducting materials for high efficiency light-driven energy conversion systems. The outcomes of the research at the facility will lead to significant economic and environmental benefits for many industries, such as low cost solar cells and water purifications.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100127
Funder
Australian Research Council
Funding Amount
$250,000.00
Summary
Hall effect system for detailed electrical characterisation in semiconductors. Semiconductor characterisation is crucial for research and development in optimum growth and fabrication procedures. This Hall effect measurement system is an essential carrier characterisation technique for semiconductors with potential applications in microelectronics, optoelectronics and photovoltaics.
III-V semiconductor nanowire solar cells without p-n junctions. This project proposes a new class of nanowire solar cells that do not rely on conventional electrical (p-n) junction for photo-generated charge carrier separation. Instead the band structure of the semiconductors is engineered to form a misalignment which leads to the spatial separation of carriers. This approach is expected to fundamentally change the design of solar cells, eliminating the technologically challenging need for formi ....III-V semiconductor nanowire solar cells without p-n junctions. This project proposes a new class of nanowire solar cells that do not rely on conventional electrical (p-n) junction for photo-generated charge carrier separation. Instead the band structure of the semiconductors is engineered to form a misalignment which leads to the spatial separation of carriers. This approach is expected to fundamentally change the design of solar cells, eliminating the technologically challenging need for forming good electrical junctions, while retaining all advantages inherent to III-V semiconductor nanowire solar cells. More importantly, the device concept proposed is expected to have implications for a wider class of solar cells based on exotic/novel materials or nanostructures where achieving both n- and p-doping may be challenging.Read moreRead less
Environmentally benign polymer solar cells. The project aims to prepare polymer solar cells, by developing water-compatible conjugated materials for the active layer. This technology would be cost-efficient and not use environmentally harmful solvents. The project would achieve aqueous compatibility of these hydrophobic molecules through substitution and careful positioning of functional groups. Fabrication processes will be optimised to incorporate these materials into solar cells, with a focus ....Environmentally benign polymer solar cells. The project aims to prepare polymer solar cells, by developing water-compatible conjugated materials for the active layer. This technology would be cost-efficient and not use environmentally harmful solvents. The project would achieve aqueous compatibility of these hydrophobic molecules through substitution and careful positioning of functional groups. Fabrication processes will be optimised to incorporate these materials into solar cells, with a focus on controlling the morphology of the active material. Determining the relationships between conjugated molecular design and cell performance should provide a new direction in solar-cell technology.Read moreRead less
Advanced glazing systems for solar energy harvesting and radiation control. Development of advanced energy-saving glass and glazings capable of generating electricity is expected to lead towards new products of significant commercial potential. The outcomes of this project undertaken by Edith Cowan University and Tropiglas will raise the energy efficiency of commercial buildings and vehicles to levels not possible with other technologies.
van der Waals epitaxy for advanced and flexible optoelectronics. This project aims to investigate the growth of compound semiconductors directly on two-dimensional material templates, via the so-called van der Waals epitaxy. Two-dimensional materials combined with compound semiconductors as optoelectronic materials can have many uses. This project expects to design flexible solar cells, which could be integrated with fabrics or building products, and lasers that need small drive currents. It wil ....van der Waals epitaxy for advanced and flexible optoelectronics. This project aims to investigate the growth of compound semiconductors directly on two-dimensional material templates, via the so-called van der Waals epitaxy. Two-dimensional materials combined with compound semiconductors as optoelectronic materials can have many uses. This project expects to design flexible solar cells, which could be integrated with fabrics or building products, and lasers that need small drive currents. It will use the Anderson localisation effect, a photon management concept, to control the interaction between photons and material and improve device efficiencies.Read moreRead less
Metal Halide Perovskite Metal-organic Framework Crystal-Glass Composites. This project aims to investigate the highly stable and efficient semiconductive composite materials, recently discovered by my group, consisting of metal halide perovskite embedded in metal-organic framework glass. An integrated experimental and computational approach will be used to study the structures and interfacial bonding mechanisms that govern the highly sought-after properties for the composites. Expected outcomes ....Metal Halide Perovskite Metal-organic Framework Crystal-Glass Composites. This project aims to investigate the highly stable and efficient semiconductive composite materials, recently discovered by my group, consisting of metal halide perovskite embedded in metal-organic framework glass. An integrated experimental and computational approach will be used to study the structures and interfacial bonding mechanisms that govern the highly sought-after properties for the composites. Expected outcomes are a new generation of environmentally safe perovskite devices for energy, environmental and health applications, e.g. lighting, displays, X-ray sensing, photocatalysis and photovoltaics. This project will position Australia at the forefront of semiconducting device research and create commercial opportunities. Read moreRead less