Electronic coupling and nanoscale engineering of two-dimensional nanojunctions. This project aims to improve the design of photovoltaic, energy storage, and nanocatalytic devices by using quantum-size tuning, orientation control, strain engineering, and surface modification to manipulate the electronic coupling and charge transfer of two-dimensional nanojunctions. The limitations of and potential environmental damage from fossil-fuel-based energy resources have increased interest in renewable en ....Electronic coupling and nanoscale engineering of two-dimensional nanojunctions. This project aims to improve the design of photovoltaic, energy storage, and nanocatalytic devices by using quantum-size tuning, orientation control, strain engineering, and surface modification to manipulate the electronic coupling and charge transfer of two-dimensional nanojunctions. The limitations of and potential environmental damage from fossil-fuel-based energy resources have increased interest in renewable energy research. The expected outcomes are electron-scale understanding of the tuneable functionalisation of two-dimensional nanojunctions and the design of low-cost and high-efficiency renewable energy devices.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100069
Funder
Australian Research Council
Funding Amount
$200,000.00
Summary
A complete thermo-electric characterisation facility for exploration of novel materials and devices at high temperatures. This high temperature materials’ characterisation facility will be the most advanced measurement setup of its kind in Australia. The unique features of the equipment and its high versatility will substantially enhance national research capabilities in functional materials, metal engineering, manufacturing engineering, chemistry, and physics.
Enabling Next-generation Rechargeable Aluminium-ion Batteries. This project aims to develop a new generation of high performance and low-cost cathode materials for rechargeable aluminium ion batteries. To address the low capacity issue of current cathodes, this project anticipates to generate new knowledge in the material design of novel graphene materials. By developing an innovative surface perforation technique coupled in a continuous production process, this project expects to produce scalab ....Enabling Next-generation Rechargeable Aluminium-ion Batteries. This project aims to develop a new generation of high performance and low-cost cathode materials for rechargeable aluminium ion batteries. To address the low capacity issue of current cathodes, this project anticipates to generate new knowledge in the material design of novel graphene materials. By developing an innovative surface perforation technique coupled in a continuous production process, this project expects to produce scalable and cost-effective graphene cathodes with a record-high capacity. Expected outcomes of this project include industrial adaptable manufacturing processing and advanced materials for aluminium ion batteries, thus increasing the competitiveness of the partner organisation in the rapid growing graphene market.
Read moreRead less
Enabling Next-generation Rechargeable Aluminium-ion Batteries. This project aims to develop a new generation of high performance and low-cost cathode materials for rechargeable aluminium ion batteries. To address the low capacity issue of current cathodes, this project anticipates to generate new knowledge in the material design of novel graphene materials. By developing an innovative surface perforation technique coupled in a continuous production process, this project expects to produce scalab ....Enabling Next-generation Rechargeable Aluminium-ion Batteries. This project aims to develop a new generation of high performance and low-cost cathode materials for rechargeable aluminium ion batteries. To address the low capacity issue of current cathodes, this project anticipates to generate new knowledge in the material design of novel graphene materials. By developing an innovative surface perforation technique coupled in a continuous production process, this project expects to produce scalable and cost-effective graphene cathodes with a record-high capacity. Expected outcomes of this project include industrial adaptable manufacturing processing and advanced materials for aluminium ion batteries, thus increasing the competitiveness of the partner organisation in the rapid growing graphene market.
Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE210100153
Funder
Australian Research Council
Funding Amount
$497,264.00
Summary
Integrated In situ Characterisation Facilities for Energy Studies. This project aims to establish a new capability to reveal catalytic behaviour of materials under practical working conditions at multi-scale levels. Through in situ monitoring of surface, interface and structural properties of catalysts, this unique integrated facility will overcome current limitations due to a lack of understanding of reaction mechanism, by ex situ and/or individual in situ characterisations. This world-class fa ....Integrated In situ Characterisation Facilities for Energy Studies. This project aims to establish a new capability to reveal catalytic behaviour of materials under practical working conditions at multi-scale levels. Through in situ monitoring of surface, interface and structural properties of catalysts, this unique integrated facility will overcome current limitations due to a lack of understanding of reaction mechanism, by ex situ and/or individual in situ characterisations. This world-class facility will significantly advance a range of electrocatalysis, photocatalysis and battery applications for renewable energy-storage and clean-fuel generation. This will be Australia’s only platform; it will benefit a number of innovative research projects in energy, catalysis and environmental and materials science.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100017
Funder
Australian Research Council
Funding Amount
$300,000.00
Summary
An integrated system for measuring thermoelectric properties of advanced materials. This facility will establish an integrated measuring system which will form the key step in developing thermoelectric materials. The instruments will support groundbreaking research in developing advanced materials with significant economic and environmental benefits for many industries, such as materials manufacturing and improving automobile energy efficiency.
Self-cleaning thin films for anti-reflective solar cell coatings. This project addresses an important industry need by designing a new class of functional composite coatings for efficiency and durability improvement of solar cells. A successful outcome will provide an important breakthrough in thin film technology applicable not only to solar panels but also other coating applications.
Next-generation fluid-in-solid capacitor materials. This project will create next-generation materials to maximize the energy and power densities of electrochemical capacitors (ECs). The performance gap between batteries and ECs remains paradox. Devices with high energy and power densities will largely boost the performance of electric vehicles, mobile devices and smart grids. By innovating the design of capacitor materials using layered fluid-in-solid architecture, the project will produce new- ....Next-generation fluid-in-solid capacitor materials. This project will create next-generation materials to maximize the energy and power densities of electrochemical capacitors (ECs). The performance gap between batteries and ECs remains paradox. Devices with high energy and power densities will largely boost the performance of electric vehicles, mobile devices and smart grids. By innovating the design of capacitor materials using layered fluid-in-solid architecture, the project will produce new-concept ECs with energy density approaching to batteries. Such ECs will synchronously possess dramatically high power density, intrinsically unlike hybrid battery-capacitor. This project will maximize the efficiency of future electronics, vehicles and grids with the new generation ECs.Read moreRead less
Nanoscale electrochemical imaging of catalyst inks for water oxidation. This project aims to reduce the cost of current water splitting technology by making new catalysts from earth abundant materials that will ensure a sustainable technological solution for the storage of renewable energy. This technology is an excellent solution to storing energy from intermittent renewable energy sources such as solar as it generates hydrogen which is a clean fuel. Using new techniques that can image the cata ....Nanoscale electrochemical imaging of catalyst inks for water oxidation. This project aims to reduce the cost of current water splitting technology by making new catalysts from earth abundant materials that will ensure a sustainable technological solution for the storage of renewable energy. This technology is an excellent solution to storing energy from intermittent renewable energy sources such as solar as it generates hydrogen which is a clean fuel. Using new techniques that can image the catalyst at the nanoscale while it is operating is expected to provide the knowledge for developing the next generation of water splitting electrolysers that can be utilised by households and businesses for storing solar or wind energy.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE200100448
Funder
Australian Research Council
Funding Amount
$400,116.00
Summary
Developing high-performance GeTe-based thermoelectric materials. This project aims to develop high-performance germanium telluride-based thermoelectric materials by microstructure engineering and band engineering, which will accelerate the drive for eco-friendly energy technology. The outcomes can result in innovative strategies for maximising thermoelectric performance in broader materials and lead to significant progress in knowledge of materials science, solid-state physics, and chemical scie ....Developing high-performance GeTe-based thermoelectric materials. This project aims to develop high-performance germanium telluride-based thermoelectric materials by microstructure engineering and band engineering, which will accelerate the drive for eco-friendly energy technology. The outcomes can result in innovative strategies for maximising thermoelectric performance in broader materials and lead to significant progress in knowledge of materials science, solid-state physics, and chemical science. Thermoelectric devices assembled from as-obtained high-efficiency materials can be used for recovering waste-heat in mining industries and harvesting the waste-heat from engines to improve fuel consumption efficiency, which will strategically boost Australia's energy industry, environment, and economy.Read moreRead less