Discovery Early Career Researcher Award - Grant ID: DE170101249
Funder
Australian Research Council
Funding Amount
$360,000.00
Summary
Polymers with controllable networks. This project aims to understand the mechanism and molecular level factors controlling the network flexibility, reversibility and rapid curing of cross-linked polymer structures. A highly formable, rapidly curing polymer network could improve manufacture of composites where a fibre material is embedded in a polymer matrix. The key challenges for these materials are achieving high rates of production (one part per minute) and end of life recyclability. Expected ....Polymers with controllable networks. This project aims to understand the mechanism and molecular level factors controlling the network flexibility, reversibility and rapid curing of cross-linked polymer structures. A highly formable, rapidly curing polymer network could improve manufacture of composites where a fibre material is embedded in a polymer matrix. The key challenges for these materials are achieving high rates of production (one part per minute) and end of life recyclability. Expected outcomes are polymer materials with tailorable properties and the uptake of lightweight composite materials into mass transport systems.Read moreRead less
Development of a novel and practical method for fabricating carbon nanotube reinforced polymer composites for automotive applications. An effective, economical and environmentally friendly technology will be developed by this project to fabricate carbon nanotube reinforced polymer composites. The thus obtained products will be applied as automotive parts.
Industrial Transformation Training Centres - Grant ID: IC210100023
Funder
Australian Research Council
Funding Amount
$4,943,949.00
Summary
ARC Training Centre in Bioplastics and Biocomposites. There is unprecedented growth in demand for bioderived and biodegradable materials. This Training Centre in Bioplastics and Biocomposites will capitalise on Australia’s abundance of the requisite natural bioresources to drive advances in technology for the development of bioplastic and biocomposite products for the new bioeconomy. The aim is to deliver leading edge research with a holistic focus on technical, social, policy and end of life so ....ARC Training Centre in Bioplastics and Biocomposites. There is unprecedented growth in demand for bioderived and biodegradable materials. This Training Centre in Bioplastics and Biocomposites will capitalise on Australia’s abundance of the requisite natural bioresources to drive advances in technology for the development of bioplastic and biocomposite products for the new bioeconomy. The aim is to deliver leading edge research with a holistic focus on technical, social, policy and end of life solutions, training a cohort of industry ready research specialists to underpin Australia’s transition to a globally significant bioplastics and biocomposites industry, while at the same time laying the foundations for accelerated growth in this space.Read moreRead less
Novel fuel-cell structures based on electroactive polymers. This project will tackle some of the challenges currently hindering progression of our society into a post-petroleum era via materials developments that will lead to in-expensive, more efficient fuel cell technologies. Specifically, a new class of organic catalysts and novel ion conducting membranes will be integrated into functional fuel-cells.
Designing starches for increased productivity in mineral flotation. Designing starches for increased productivity in mineral flotation. This project aims to understand the process of starch-mineral surface interactions, and design and develop tailored starch depressant/flocculant biopolymers for mineral beneficiation via the froth flotation process. Natural and modified starches are used as depressants and flocculants in mineral flotation, but scientists lack knowledge of mechanisms describing s ....Designing starches for increased productivity in mineral flotation. Designing starches for increased productivity in mineral flotation. This project aims to understand the process of starch-mineral surface interactions, and design and develop tailored starch depressant/flocculant biopolymers for mineral beneficiation via the froth flotation process. Natural and modified starches are used as depressants and flocculants in mineral flotation, but scientists lack knowledge of mechanisms describing starch-mineral surface interactions, particularly how they process base metal sulphides. This project also intends to develop starch characterisation techniques and novel methods for modifying starch structures and functionalities. Anticipated outcomes are new novel manufacturing applications for starch in Australia.Read moreRead less
Self-reinforced biopolymer composites. This project will pioneer high performance and biodegradable composites using self-reinforced biopolymer composites. Composites can have poor properties due to interfacial issues, and this reduces their performance. By producing a fully self-reinforced (where the fibre and the polymer are the same type of polymer) polymer composites, the project will develop a way to improve properties, increase the use of biobased materials, and improve recyclability and b ....Self-reinforced biopolymer composites. This project will pioneer high performance and biodegradable composites using self-reinforced biopolymer composites. Composites can have poor properties due to interfacial issues, and this reduces their performance. By producing a fully self-reinforced (where the fibre and the polymer are the same type of polymer) polymer composites, the project will develop a way to improve properties, increase the use of biobased materials, and improve recyclability and biodegradability. Outcomes include greater understanding of design of self-reinforced biopolymer composites structure, processing and properties. This will produce opportunities for high performance biobased composite manufacturing and a growing circular plastics economy for Australia.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE120102784
Funder
Australian Research Council
Funding Amount
$375,000.00
Summary
Water-swellable rubber with nanoparticle-enabled super capacity as smart water-leakage sealant. A novel water-swellable rubber (WSR) sealant with continuous hydrophobic phase and isolated hydrophilic phase is developed for stopping water leakage from gaps and cracks. Nanoparticle-enabled blocks and network channels in rubber matrix effectively improve the integrity and capability of WSR as smart water-leakage sealants in various applications.
Cost effective carbon fibres from polyethylene for lightweight applications. This project aims to deliver cost-effective, high-performance carbon fibres from polyethylene through the use of novel catalysts and advanced processing techniques. Carbon fibre-reinforced composites are extremely strong and light fibre-reinforced polymers that are commonly used wherever high strength-to-weight ratio and rigidity are required, such as in aerospace, automotive and civil engineering applications. However, ....Cost effective carbon fibres from polyethylene for lightweight applications. This project aims to deliver cost-effective, high-performance carbon fibres from polyethylene through the use of novel catalysts and advanced processing techniques. Carbon fibre-reinforced composites are extremely strong and light fibre-reinforced polymers that are commonly used wherever high strength-to-weight ratio and rigidity are required, such as in aerospace, automotive and civil engineering applications. However, broader market uptake is currently limited by carbon fibre costs. The project aims to deliver high-quality fibre with real potential to capture a share of the $14-billion carbon fibre composite market.Read moreRead less
Functionalised biopolymers - a new class of renewable nano-engineered materials. Licella is an Australian start-up company, focusing on developing uses for the renewable resource lignocellulosic biomass; a fibrous material sourced principally from waste, such as that generated by forestry and agricultural operations. It is possible to use such waste and process it to separate the biomass components. This project proposes to modify these biomass fractions with living radical polymerisation (LPR) ....Functionalised biopolymers - a new class of renewable nano-engineered materials. Licella is an Australian start-up company, focusing on developing uses for the renewable resource lignocellulosic biomass; a fibrous material sourced principally from waste, such as that generated by forestry and agricultural operations. It is possible to use such waste and process it to separate the biomass components. This project proposes to modify these biomass fractions with living radical polymerisation (LPR) polymers to impart functionalities, such as antimicrobial properties, high tensile strengths and/or in-built photodegrability. New, high-performance sustainable materials like these will be the back-bone of the polymer/plastics industry of the future, replacing common plastics, sourced from non-renewable petrochemicals, with benign, sustainable plastics.Read moreRead less
Bio-inspired electro catalysts for gas reduction reactions: towards electrochemical ammonia production under ambient conditions. This project will develop solutions to replace the current energy inefficient method for ammonia production, which are a significant contribution to Greenhouse Gas emissions. A more energy efficient system will be developed from a new class of composite gas-reduction catalysts integrated into functional electrochemical cells.