ARC Research Network for Advanced Materials. Materials science/engineering is decidedly interdisciplinary, covering all science and impacting on all manufacturing industry. This network will promote interactions that do not usually occur between materials researchers and students across Australia and internationally from diverse disciplines. The scope is broadly based on advanced materials production, processing and properties but focused in four areas, involving: i) innovative structural/functi ....ARC Research Network for Advanced Materials. Materials science/engineering is decidedly interdisciplinary, covering all science and impacting on all manufacturing industry. This network will promote interactions that do not usually occur between materials researchers and students across Australia and internationally from diverse disciplines. The scope is broadly based on advanced materials production, processing and properties but focused in four areas, involving: i) innovative structural/functional materials, ii) high-tech IT/communications/sensing materials, iii) materials solutions for manufacturing, iv) materials for a sustainable Australia, and v) emerging materials technologies. Key programs will promote interdisciplinary workshops and early career researcher interactions.Read moreRead less
Development of ultrafine Grained Steels. This project will develop new methods to produce steels with much finer microstructures, and investigate how these microstructures form. This will markedly increase the strength and toughness of these steels, which is particularly required for the pipeline, off shore platform and large construction industries. The method to be used involves controlling the hot deformation of the steel and control of the phase transformation during or after deformation. ....Development of ultrafine Grained Steels. This project will develop new methods to produce steels with much finer microstructures, and investigate how these microstructures form. This will markedly increase the strength and toughness of these steels, which is particularly required for the pipeline, off shore platform and large construction industries. The method to be used involves controlling the hot deformation of the steel and control of the phase transformation during or after deformation. Current work has shown that it is possible to reduce the grain size from 5 to 1microns using quite simple methods.Read moreRead less
Development of high-temperature superconducting coated conductors by pulsed-laser deposition technique for future long-length applications. The aim of the project is to develop a novel technology for manufacturing flexible coated conductors with the help of a pulsed laser deposition technique, in order to enhance the current-carrying ability of high-temperature superconducting coatings (including multi-layered coatings) for future long-length high power applications. To achieve desirable electr ....Development of high-temperature superconducting coated conductors by pulsed-laser deposition technique for future long-length applications. The aim of the project is to develop a novel technology for manufacturing flexible coated conductors with the help of a pulsed laser deposition technique, in order to enhance the current-carrying ability of high-temperature superconducting coatings (including multi-layered coatings) for future long-length high power applications. To achieve desirable electromagnetic properties governed by the nano-structures of the coatings, a well-balanced combination of world-class "global" and "local" electromagnetic property measurements with advanced structural characterisations is suggested. It is expected that a controlled network of nano-scale pinning centres will allow the development of high performance coated conductors.Read moreRead less
Crystalline Mesoporous Metal Oxides for Solid Oxide Fuel Cell Electrodes. Our crystalline mesoporous electrodes will help realise the full potentials of solid oxide fuel cells. Such advanced fuel cell technology will drastically increase the power generation efficiency, and reduce CO2 emissions from present power plants, thereby transforming Australian energy industry and improving our environment. The design and development of novel crystalline mesoporous materials that find widespread industri ....Crystalline Mesoporous Metal Oxides for Solid Oxide Fuel Cell Electrodes. Our crystalline mesoporous electrodes will help realise the full potentials of solid oxide fuel cells. Such advanced fuel cell technology will drastically increase the power generation efficiency, and reduce CO2 emissions from present power plants, thereby transforming Australian energy industry and improving our environment. The design and development of novel crystalline mesoporous materials that find widespread industrial applications will advance Australia's knowledge and skill base, and help Australia's high-tech industries to stay competitive, including the development of new high-tech industries in Australia.Read moreRead less
Structure of Epitaxial Semiconductor Quantum Dots. Epitaxially grown semiconductor quantum dots have received extensive attention in recent years due to their potential applications in electronic and optoelectronic devises. However, the quality of current grown quantum dots is still very far from that required for real device applications due to a lack of detailed knowledge of their nanostructures. This project aims to combine the strength of growing semiconductor quantum dots at Fudan Universit ....Structure of Epitaxial Semiconductor Quantum Dots. Epitaxially grown semiconductor quantum dots have received extensive attention in recent years due to their potential applications in electronic and optoelectronic devises. However, the quality of current grown quantum dots is still very far from that required for real device applications due to a lack of detailed knowledge of their nanostructures. This project aims to combine the strength of growing semiconductor quantum dots at Fudan University and the world-class characterisation facilities (advanced transmission electron microscopy) at the University of Queensland to actively explore optimum paths for epaxially growing device-quality semiconductor quantum dots.Read moreRead less
Investigation of a series of metallic sustrate materials suitable for developing long Y-Ba-Cu-O superconductors. Aims: Researchers from Institute for Superconducting and Electronic Materials, the University of Wollongong (UoW) & the Dept. Mat. Sci & Eng., University of Cincinnati (UC) in USA will build strong collaborations through joint research on a series of metallic substrate materials. Significance: The research work will contribute to the development of the second generation of high temper ....Investigation of a series of metallic sustrate materials suitable for developing long Y-Ba-Cu-O superconductors. Aims: Researchers from Institute for Superconducting and Electronic Materials, the University of Wollongong (UoW) & the Dept. Mat. Sci & Eng., University of Cincinnati (UC) in USA will build strong collaborations through joint research on a series of metallic substrate materials. Significance: The research work will contribute to the development of the second generation of high temperature superconducting wire technology. Expected outcomes: strengthen international research experience for junior researchers and develop new collaborations between senior researchers from UoW in Australia and UC in USA.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE0668257
Funder
Australian Research Council
Funding Amount
$1,200,000.00
Summary
Combinatorial Deposition and Characterisation Facility for New Alloy Thin Film Materials. Australia's competitive edge in materials research is key to maintaining our economic prosperity. Infrastructure that enables our researchers to synthesize novel materials with precise control over composition and structure is crucial to maintaining our strengths in this field. The proposed infrastructure will accelerate progress on the preparation and characterisation of new alloy and nanostructured materi ....Combinatorial Deposition and Characterisation Facility for New Alloy Thin Film Materials. Australia's competitive edge in materials research is key to maintaining our economic prosperity. Infrastructure that enables our researchers to synthesize novel materials with precise control over composition and structure is crucial to maintaining our strengths in this field. The proposed infrastructure will accelerate progress on the preparation and characterisation of new alloy and nanostructured materials and will pay dividends by providing early access to the best materials. This will give our energy technology, biomedical engineering, tooling, electronics and mining industries a competitive edge. Access to this new generation equipment will enhance our pool of highly skilled materials technologists.Read moreRead less
Preparation of silica-based thin film materials with large optical nonlinearity. There is currently a lack of advanced thin film materials suitable for fabricating integrated electro-optic devices to use in optical telecommunication. Such materials will be produced, and their application will be developed through this project. The physical mechanism of the marvelous optical nonlinearities of the materials will also be investigated. Thus the achievement of this project will bring great advancemen ....Preparation of silica-based thin film materials with large optical nonlinearity. There is currently a lack of advanced thin film materials suitable for fabricating integrated electro-optic devices to use in optical telecommunication. Such materials will be produced, and their application will be developed through this project. The physical mechanism of the marvelous optical nonlinearities of the materials will also be investigated. Thus the achievement of this project will bring great advancement in both scientific knowledge and technologies for Australia, and provide huge opportunities to boost Australian telecommunication industries, which are developing quickly in recent years.Read moreRead less
A Novel Approach to Determine Permeability for Cost-Effective Manufacturing of Thermoplastic Matrix Composites. The permeability (resistance of a porous rigid body to a permeating fluid) is an essential parameter for predicting impregnation quality in processing of thermoplastic composite materials. No reliable method exists yet to estimate permeabilities without time-consuming and cost intensive experiments. The aim of the proposed research project is to obtain a basic knowledge in determining ....A Novel Approach to Determine Permeability for Cost-Effective Manufacturing of Thermoplastic Matrix Composites. The permeability (resistance of a porous rigid body to a permeating fluid) is an essential parameter for predicting impregnation quality in processing of thermoplastic composite materials. No reliable method exists yet to estimate permeabilities without time-consuming and cost intensive experiments. The aim of the proposed research project is to obtain a basic knowledge in determining permeabilities of fibre architectures by taking into account their stochastic properties. An innovative approach, based on characterisations of meso-structures of fibre network and simulation of computational fluid dynamics, will be developed to accurately determine permeabilities. The outcome will enable more cost-effective manufacturing of thermoplastic matrix composites.Read moreRead less
Fatigue Life Prediction of Nano-filler Modified Composites. The proposed project aims to study the behaviour and the failure mechanisms of polymer nanocomposites under cyclic loading. The outcomes of the project will make original contributions to our knowledge base on such materials. The mechanics modelling and statistical analysis of the prediction of fatigue life will provide a sound physical basis and a useful tool for any future improvement and optimisation of the composites to achieve bett ....Fatigue Life Prediction of Nano-filler Modified Composites. The proposed project aims to study the behaviour and the failure mechanisms of polymer nanocomposites under cyclic loading. The outcomes of the project will make original contributions to our knowledge base on such materials. The mechanics modelling and statistical analysis of the prediction of fatigue life will provide a sound physical basis and a useful tool for any future improvement and optimisation of the composites to achieve better reliability and integrity in their intended applications. This study will bring economic benefits to the end-users of advanced material technology including the Australian materials industries. Read moreRead less