Linkage Infrastructure, Equipment And Facilities - Grant ID: LE180100002
Funder
Australian Research Council
Funding Amount
$808,191.00
Summary
A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The fa ....A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The facility will significantly enhance the research capability in the newly established ARC Training Centre for Automated Manufacture of Advanced Composites, which will engage with Australian industry to improve productivity and material performance for industry sectors such as aerospace, automotive, marine, and sport.Read moreRead less
A Novel Approach to Polymer/Nanosheet Composites and Their Fundamentals. Multifunctional Polymer/nanosheet composites have not yet been widely scaled up in polymer processing and composite industries mainly due to cost and inhaling hazard. This project proposes a novel methodology which embeds nanosheet preparation within polymer melt to both remove the inhaling hazard and lower the cost; the key is to develop two groups of nanosheet intercalation compounds which can expand at the polymer proces ....A Novel Approach to Polymer/Nanosheet Composites and Their Fundamentals. Multifunctional Polymer/nanosheet composites have not yet been widely scaled up in polymer processing and composite industries mainly due to cost and inhaling hazard. This project proposes a novel methodology which embeds nanosheet preparation within polymer melt to both remove the inhaling hazard and lower the cost; the key is to develop two groups of nanosheet intercalation compounds which can expand at the polymer processing temperature, to exfoliate and disperse nanosheets in polymers. It is expected to generate new knowledge of the structure-property relationships and fracture mechanisms of these composites, for industry to scale up this technology and to develop new product.Read moreRead less
Multi-functional graphene interleaves in multi-scale carbon fibre reinforced composites. This research project will lead to the development of a new class of multi-functional composites with improved mechanical/fracture performance and in-built health monitoring capability. The new composite systems will revolutionise the design of composite structures for the new generation aerospace vehicles.
Accelerating the formation of equilibrium intermetallic compounds. This project aims to develop new processing techniques to accelerate the formation of low temperature intermetallic compounds. Many exciting compounds cannot currently be used in technological applications, as they would require extremely protracted heat treatments to produce. The project will aim to determine if formation of these compounds will be accelerated if the precursor alloys are mechanically disordered so that they cont ....Accelerating the formation of equilibrium intermetallic compounds. This project aims to develop new processing techniques to accelerate the formation of low temperature intermetallic compounds. Many exciting compounds cannot currently be used in technological applications, as they would require extremely protracted heat treatments to produce. The project will aim to determine if formation of these compounds will be accelerated if the precursor alloys are mechanically disordered so that they contain a very high density of defects. This problem will be explored by investigating the formation of prototypical materials including ferromagnetic and precious metal intermetallic compounds from disordered precursors. The project will result in improved strategies for manufacturing intermetallic compounds.Read moreRead less
Development of a novel and practical method for fabricating carbon nanotube reinforced polymer composites for automotive applications. An effective, economical and environmentally friendly technology will be developed by this project to fabricate carbon nanotube reinforced polymer composites. The thus obtained products will be applied as automotive parts.
Novel fuel-cell structures based on electroactive polymers. This project will tackle some of the challenges currently hindering progression of our society into a post-petroleum era via materials developments that will lead to in-expensive, more efficient fuel cell technologies. Specifically, a new class of organic catalysts and novel ion conducting membranes will be integrated into functional fuel-cells.
Strong and Durable Flame-Retarding Composites by Multi-scale Encapsulation and Reinforcement. Fires cause approximately $100 million damage to Australian buildings each year. The effects of fire can be significantly reduced through microencapsulation of fire-retarding chemicals in composites used in the building industry. This project aims to encapsulate such chemicals in natural microtubules and develop cost-effective polymer/microtubule/graphene oxide composites that combine superior fire resi ....Strong and Durable Flame-Retarding Composites by Multi-scale Encapsulation and Reinforcement. Fires cause approximately $100 million damage to Australian buildings each year. The effects of fire can be significantly reduced through microencapsulation of fire-retarding chemicals in composites used in the building industry. This project aims to encapsulate such chemicals in natural microtubules and develop cost-effective polymer/microtubule/graphene oxide composites that combine superior fire resistance with high durability in a wide range of applications.Read moreRead less
Tailoring the nanoporous structure of polymer membranes for fast water permeation. A novel strategy of using a hydrophobic, charged polymer as an additive is proposed to tailor the wettability and charge density gradients in nanoporous polymer membranes for enhancing water permeation. The experimental results obtained in this project will advance our fundamental understanding of the roles of the pore surface charge and wettability gradients in water transport through nanopores. The proposed rese ....Tailoring the nanoporous structure of polymer membranes for fast water permeation. A novel strategy of using a hydrophobic, charged polymer as an additive is proposed to tailor the wettability and charge density gradients in nanoporous polymer membranes for enhancing water permeation. The experimental results obtained in this project will advance our fundamental understanding of the roles of the pore surface charge and wettability gradients in water transport through nanopores. The proposed research is expected to result in a major breakthrough in designing nanoporous membranes with ultrahigh high flux and superior separation properties for a variety of applications including water treatment and food processing. Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100166
Funder
Australian Research Council
Funding Amount
$240,000.00
Summary
Infrared and Raman microspectroscopic equipment for biomolecular and nanostructural analysis. This project will expand the combined microspectroscopic capabilities of Deakin and Monash Universities to enable high resolution characterisation of a diverse range of components in the fields of biotechnology and nanomaterials. The facility can be applied to pinpointing co-localised compounds within cells through to characterising metal composites, carbon nano tubes and fibres.
Bio-inspired conducting peptide nanowires for bioelectronic applications. Some bacteria possess a natural conductive tail constructed from proteins (called a nanowire) that has metal-like conductivity. The electrical signals in these nanowires are carried through aromatic groups in the peptides and/or attached cytochromes. This project addresses the design and assembly of conducting peptide-based fibrils inspired by these nanowires. It has already been shown that peptides can, by design, self-as ....Bio-inspired conducting peptide nanowires for bioelectronic applications. Some bacteria possess a natural conductive tail constructed from proteins (called a nanowire) that has metal-like conductivity. The electrical signals in these nanowires are carried through aromatic groups in the peptides and/or attached cytochromes. This project addresses the design and assembly of conducting peptide-based fibrils inspired by these nanowires. It has already been shown that peptides can, by design, self-assemble into long thermostable fibrils that support cell growth and development. The project’s goal is now to create cost-effective, non-toxic, conducting peptide fibrils that can be used in water or physiological environments for bioelectronics applications.Read moreRead less