Tailoring the optical properties of matter with Sol-Gel: innovative optical materials for 3D photonic crystals with complete photonic band-gap. The success of this project will allow for improvement of existing technologies in diverse fields, from optics to green energy production. Realization of 3D complete Photonic Band-Gap (PBG) structures is the first step toward full optic-based data processing systems, which will be one of the most revolutionary achievements in technology after introductio ....Tailoring the optical properties of matter with Sol-Gel: innovative optical materials for 3D photonic crystals with complete photonic band-gap. The success of this project will allow for improvement of existing technologies in diverse fields, from optics to green energy production. Realization of 3D complete Photonic Band-Gap (PBG) structures is the first step toward full optic-based data processing systems, which will be one of the most revolutionary achievements in technology after introduction of electronic-based processors. Improvement of energy conversion efficiency of existing solar cells and polymer-based solar cells will be achievable thanks to implementation of PhCs as high-reflective layers. The establishment of scaleable protocols for production of high quality materials for photonics will put Australia among the leading countries in the future photonic-devices market.Read moreRead less
Dopants, defects and related issues in Zinc Oxide. ZnO is a promising semiconductor for optoelectronic devices namely green, blue, ultraviolet (UV) and white light emitting diodes (LEDs) and ultimately UV lasers. It can also act as a transparent conductive oxide which has applications in flat panel displays and photovoltaic devices. Because of these potential applications, ZnO is the 'hottest' semiconductor with abounding literature and four new international conferences organised on progress in ....Dopants, defects and related issues in Zinc Oxide. ZnO is a promising semiconductor for optoelectronic devices namely green, blue, ultraviolet (UV) and white light emitting diodes (LEDs) and ultimately UV lasers. It can also act as a transparent conductive oxide which has applications in flat panel displays and photovoltaic devices. Because of these potential applications, ZnO is the 'hottest' semiconductor with abounding literature and four new international conferences organised on progress in this research area in recent years. This project is an excellent opportunity for Australia to increase its strength in optoelectronic device research and to provide an understanding of some fundamental issues in doping, defect formation, diffusion and annihilation in ZnO.Read moreRead less
THEORETICAL AND EXPERIMENTAL STUDIES OF BLOCK COPOLYMER MELTS AS NANO-MATERIALS. We shall theoretically study and predict the possible morphologies of a wide range of block copolymer architectures with a combination of simulations and accurate numerical theories. These block copolymer melts are of great technological importance because they can self-assemble into morphological patterns which are periodic on a nano-scale. Hence they are now being intensively investigated for uses in applications ....THEORETICAL AND EXPERIMENTAL STUDIES OF BLOCK COPOLYMER MELTS AS NANO-MATERIALS. We shall theoretically study and predict the possible morphologies of a wide range of block copolymer architectures with a combination of simulations and accurate numerical theories. These block copolymer melts are of great technological importance because they can self-assemble into morphological patterns which are periodic on a nano-scale. Hence they are now being intensively investigated for uses in applications as diverse as lithographic templates for electronic and optical devices, nano-porous membranes and photonic band gap materials. We shall verify our theoretical predictions by carrying out experiments on the various molecular architectures that we have studied theoretically.Read moreRead less
Development of room temperature diluted magnetic semiconductors for spintronics devices application. Semiconductor spintronics is very likely to have a significant impact on future generations of devices. Until recently, Australian research groups have played a minor role in the field. The proposed program will lead to new discoveries or fundamental advances within semiconductor spintronics or have substantial impact on the progress in this field. The accomplishments of this project can great ....Development of room temperature diluted magnetic semiconductors for spintronics devices application. Semiconductor spintronics is very likely to have a significant impact on future generations of devices. Until recently, Australian research groups have played a minor role in the field. The proposed program will lead to new discoveries or fundamental advances within semiconductor spintronics or have substantial impact on the progress in this field. The accomplishments of this project can greatly increase the scientific understanding of diluted magnetic semiconductors and expand Australia's knowledge base in research in these materials. This program can also be an education platform to provide a number of scientific talents for Australia by intensively training high quality postgraduates at the international level.Read moreRead less
Nanocavities in Si - Structural Evolution and Metal Gettering. Nanocavities represent a novel means of minimising metallic contamination in the active region of Si microelectronic devices. We propose innovative experiments, using in-situ transmission electron microscopy and synchrotron-based x-ray methods, to achieve a fundamental understanding of the processes that govern nanocavity structural evolution and metallic impurity trapping. We seek to develop a patentable technology to enhance impu ....Nanocavities in Si - Structural Evolution and Metal Gettering. Nanocavities represent a novel means of minimising metallic contamination in the active region of Si microelectronic devices. We propose innovative experiments, using in-situ transmission electron microscopy and synchrotron-based x-ray methods, to achieve a fundamental understanding of the processes that govern nanocavity structural evolution and metallic impurity trapping. We seek to develop a patentable technology to enhance impurity trapping efficiency and thus dramatically increase the applicability of this industrially-relevant process.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE0560959
Funder
Australian Research Council
Funding Amount
$165,000.00
Summary
The Macquarie National Low Temperature Optoelectronic Thin Film Growth Facility. Funding is requested for an Australian facility for the growth of nitride and oxide thin films with in-situ optical analysis equipment for the monitoring of growth parameters. It is envisaged that this facility would be for the development of materials and device structures for photonic, electronic and optoelectronic applications. The facility will also provide a leading Australian source of these materials for fund ....The Macquarie National Low Temperature Optoelectronic Thin Film Growth Facility. Funding is requested for an Australian facility for the growth of nitride and oxide thin films with in-situ optical analysis equipment for the monitoring of growth parameters. It is envisaged that this facility would be for the development of materials and device structures for photonic, electronic and optoelectronic applications. The facility will also provide a leading Australian source of these materials for fundamental material studies utilising nuclear analysis and implantation technologies, high resolution X-ray diffraction, high spatial resolution micro-cathodoluminescence and other forms of analysis. Ex-situ optical analysis equipment is also requested for post-growth evaluation to compliment and evaluate the in-situ analysis.Read moreRead less
Development of superconducting leads with ultra-low thermal conductivity for cryoelectronic applications. Superconducting systems are revolutionary technologies that have the potential to make a significant impact on society. The development of the new technology of superconducting wiring, which would effectively eliminate heat generation and its transfer to the cryogenic electronics, and its subsequent employment will enable superconductive electronics to become price competitive, significantly ....Development of superconducting leads with ultra-low thermal conductivity for cryoelectronic applications. Superconducting systems are revolutionary technologies that have the potential to make a significant impact on society. The development of the new technology of superconducting wiring, which would effectively eliminate heat generation and its transfer to the cryogenic electronics, and its subsequent employment will enable superconductive electronics to become price competitive, significantly outperforming conventional systems. The establishment of this new frontier technology of heat-switch current leads will benefit Australian industries and have a dramatic impact in the future on the field of cryogenic quantum electronics (such as quantum computing), which is currently under profound exploration in Australia.Read moreRead less
Ion implantation processing in Silicon Carbide for microelectronic applications. The aim of this project is to study the application of ion implantation to silicon carbide for dopant incorporation and defect engineering. The successful dopant incorporation, especially p-type doping will be crucial for SiC high power and high frequency devices. The outcomes of the project are (a) the understanding of extended and point defect formation in silicon carbide from ion implantation. (b) detailed charac ....Ion implantation processing in Silicon Carbide for microelectronic applications. The aim of this project is to study the application of ion implantation to silicon carbide for dopant incorporation and defect engineering. The successful dopant incorporation, especially p-type doping will be crucial for SiC high power and high frequency devices. The outcomes of the project are (a) the understanding of extended and point defect formation in silicon carbide from ion implantation. (b) detailed characterisation of the extended defects formed by ion implantation (c) establishment of dose regimes for point defects and extended defect formation and (d) development of procedures for the incorporation of dopants with minimum residual defect formation.Read moreRead less
Phase transitions in ultra-thin epitaxial polar oxide films. In this project we will utilize sophisticated thin film fabrication and characterization techniques( such as in-situ x-ray diffraction) and the most advanced computational materials science tools. Therefore this project will provide postgraduates and young researchers to cutting edge research, boosting the enormous potential of Australia in basic materials science. It brings together early career researchers with complimentary expert ....Phase transitions in ultra-thin epitaxial polar oxide films. In this project we will utilize sophisticated thin film fabrication and characterization techniques( such as in-situ x-ray diffraction) and the most advanced computational materials science tools. Therefore this project will provide postgraduates and young researchers to cutting edge research, boosting the enormous potential of Australia in basic materials science. It brings together early career researchers with complimentary expertise areas to interact with each other. It emphasizes cross-disciplinary research and exchange of research ideas across three continents; thus providing the ideal training ground for young researchers who are expected to make a major contribution to both, fundamental and applied research in the future.Read moreRead less
Investigation of novel magneto-optic materials exhibiting high Faraday figure of merit. Magneto-optical materials have a wide range of potential applications in consumer products, telecommunications and defence. Nanotechnologies based on these materials offer an even broader range of emerging applications. Understanding and participating in the development of magneto-optic technologies will therefore be critical to maintaining Australia's knowledge base and expertise in future technological adv ....Investigation of novel magneto-optic materials exhibiting high Faraday figure of merit. Magneto-optical materials have a wide range of potential applications in consumer products, telecommunications and defence. Nanotechnologies based on these materials offer an even broader range of emerging applications. Understanding and participating in the development of magneto-optic technologies will therefore be critical to maintaining Australia's knowledge base and expertise in future technological advances. Given the early stages of development of these technologies, Australia's expertise in material science and the patent rights held by Australian companies in this area, Australia has the opportunity to make major contributions to this field, and the potential to capitalise on the application of these technologies in niche markets.Read moreRead less