Unravelling structure-function relationships in high mobility donor-acceptor co-polymers. This project seeks to understand the high-performance of a new generation of semiconducting plastics. This research will enable the development of low-cost printed electronics such as flexible displays and sensors.
Development of Novel Spin Caloritronic Materials and Devices for Heat Management in Nanoelectronic Systems. Spin caloritronics is a new field that combines concepts from spintronics and thermoelectricity. This project is inspired by spin Seebeck effect observed in magnetic insulators and motivated by the basic requirements of nanoscale heat management devices. Such devices are the key components promising to surmount fundamental limits of microelectronic technologies with heat dissipation and p ....Development of Novel Spin Caloritronic Materials and Devices for Heat Management in Nanoelectronic Systems. Spin caloritronics is a new field that combines concepts from spintronics and thermoelectricity. This project is inspired by spin Seebeck effect observed in magnetic insulators and motivated by the basic requirements of nanoscale heat management devices. Such devices are the key components promising to surmount fundamental limits of microelectronic technologies with heat dissipation and power consumption as the size of charge-based logic devices shrinks into nanometre scale. This program is aimed at experimental and theoretical development of novel spin caloritronic materials with spin Seebeck effect at ambient temperature, which is orders of magnitude higher than state-of-the-art materials, for heat management in nanoelectronic systems.Read moreRead less
Multilayer thin film memristors: designing interfaces and defect states in perovskites for nanoscale multi-state memories. This project will explore memristive devices, a frontier electronic memory technology, where the memory element's behaviour depends on its prior electronic experiences. This project will attempt to understand the processes that govern the storage and recall of information, to realise functional materials and interfaces that maximise memristive performance.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100004
Funder
Australian Research Council
Funding Amount
$470,000.00
Summary
Thin film processing cluster: precise synthesis and nano-patterning of functional coatings. This facility will allow Australian researchers to create advanced functional materials with unprecedented control over material configurations and near atomic scale precision in dimensions. This will enable significant advances in high speed photonics and electronics, health and environment monitoring, and micro-energy sources.
Wearable thermoelectrics for personal heat management. Thermoregulation has substantial implications for energy consumption and human comfort and health. This project aims to develop wearable thermoelectric materials and devices with high cooling performance for personal heat management. A novel assembly approach, coupled with device design and materials engineering strategies, will be developed to engineer flexible thermoelectric materials with unique structures and chemistry. The key breakthro ....Wearable thermoelectrics for personal heat management. Thermoregulation has substantial implications for energy consumption and human comfort and health. This project aims to develop wearable thermoelectric materials and devices with high cooling performance for personal heat management. A novel assembly approach, coupled with device design and materials engineering strategies, will be developed to engineer flexible thermoelectric materials with unique structures and chemistry. The key breakthrough is to design wearable thermoelectric devices with high flexibility and user comfort. The expected outcomes of this project will lead to an innovative cooling technology for personal heat management, which will place Australia at the forefront of wearable electronics and garment industry.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE140100104
Funder
Australian Research Council
Funding Amount
$500,000.00
Summary
Collaborative facility for high resolution fabrication, imaging, and characterisation of nanostructured materials. Collaborative facility for high resolution fabrication, imaging, and characterisation of nanostructured materials: The development of the next generation of electronic, optical, and biomedical devices requires methods that can quickly manipulate and characterise matter at the nanoscale. This project will establish new tools that will allow researchers to build novel device structure ....Collaborative facility for high resolution fabrication, imaging, and characterisation of nanostructured materials. Collaborative facility for high resolution fabrication, imaging, and characterisation of nanostructured materials: The development of the next generation of electronic, optical, and biomedical devices requires methods that can quickly manipulate and characterise matter at the nanoscale. This project will establish new tools that will allow researchers to build novel device structures and analyse them at nanoscale spatial resolutions. The new facilities are required to meet the demands of a growing number of innovative projects being undertaken within a large multidisciplinary consortium of research groups. The facilities will be housed in state-of-the art laboratories and managed as open access resources for researchers which will enable advances in the areas of energy harvesting, environmental monitoring, and electronics.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100164
Funder
Australian Research Council
Funding Amount
$680,000.00
Summary
Dynamic phase behaviour characterisation facility for nanostructured interfaces and solids. This infrastructure will increase our understanding of interfacial phenomena of nanostructured materials over very short periods of time. This new understanding will allow optimisation of the correlation of the chemistry of a material to the properties of that material. The infrastructure will enhance Australia's capabilities in creating new materials relevant to electronics, medicine, the environment and ....Dynamic phase behaviour characterisation facility for nanostructured interfaces and solids. This infrastructure will increase our understanding of interfacial phenomena of nanostructured materials over very short periods of time. This new understanding will allow optimisation of the correlation of the chemistry of a material to the properties of that material. The infrastructure will enhance Australia's capabilities in creating new materials relevant to electronics, medicine, the environment and security technologies.Read moreRead less
Transistor-based sensor technology for fast, reliable and accurate in situ monitoring of recycled wastewater. Water recycling is becoming critical for water supplies worldwide, due to declining natural supplies of fresh water, combined with increasing demand. The greatest community and industry concerns over recycled water are quality assurance and relative cost. Ensuring quality requires monitoring of contaminants, yet no single real-time technology exists to measure the myriad of potential con ....Transistor-based sensor technology for fast, reliable and accurate in situ monitoring of recycled wastewater. Water recycling is becoming critical for water supplies worldwide, due to declining natural supplies of fresh water, combined with increasing demand. The greatest community and industry concerns over recycled water are quality assurance and relative cost. Ensuring quality requires monitoring of contaminants, yet no single real-time technology exists to measure the myriad of potential contaminants. This project will develop technology using AlGaN/GaN-based transistors, sensitised to different contaminants, enabling multi-analyte real-time sensor arrays. In situ monitoring systems based on such arrays will be fast, accurate, reliable, low-cost, and applicable to a broad variety of water recycling projects.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100200
Funder
Australian Research Council
Funding Amount
$200,000.00
Summary
Advanced facility for magneto-transport characterisation of semiconductor nanostructures. This facility combines a 16 Tesla superconducting magnet with temperature variability from 1.5 degrees above absolute zero to 500 degrees with advanced mobility spectrum analysis algorithms. It will enable improved separation of previously indistinguishable multiple carrier effects in advanced semiconductor systems. This improved separation will allow an improved understanding of multiple carrier effects wh ....Advanced facility for magneto-transport characterisation of semiconductor nanostructures. This facility combines a 16 Tesla superconducting magnet with temperature variability from 1.5 degrees above absolute zero to 500 degrees with advanced mobility spectrum analysis algorithms. It will enable improved separation of previously indistinguishable multiple carrier effects in advanced semiconductor systems. This improved separation will allow an improved understanding of multiple carrier effects which will be essential before the development of frontier semiconductor technologies becomes possible.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE190101152
Funder
Australian Research Council
Funding Amount
$404,000.00
Summary
Micro/nano-mechanical testing methodologies for interfacial adhesion. This project aims to develop reliable approaches for measuring the toughness of a variety of metal/polymer interfaces integral to contemporary flexible devices. Adhesion between metal thin film conductors and polymer substrates is a critical factor influencing the reliability of the emerging polymer-based flexible electronics. This project will develop new methodologies for understanding the behaviour of these metal/polymer in ....Micro/nano-mechanical testing methodologies for interfacial adhesion. This project aims to develop reliable approaches for measuring the toughness of a variety of metal/polymer interfaces integral to contemporary flexible devices. Adhesion between metal thin film conductors and polymer substrates is a critical factor influencing the reliability of the emerging polymer-based flexible electronics. This project will develop new methodologies for understanding the behaviour of these metal/polymer interfaces. This project will be a crucial enabler to accelerating the development of new flexible microelectronic technologies, from solar panels to electronic skin. This innovation will enable Australia to maintain an important connection to the rapidly-evolving international microelectronic industry and add significant value to Australian manufacturing industries.Read moreRead less