Discovery Early Career Researcher Award - Grant ID: DE210100930
Funder
Australian Research Council
Funding Amount
$396,948.00
Summary
Defect Engineering Enabling Efficient Solar Hydrogen Production. The project aims to achieve efficient renewable hydrogen production through solar driven photoelectrochemical water splitting. As a carbon-emission free process, photoelectrochemical water splitting is significant in solar hydrogen supply. The key idea is to design innovative photoelectrode materials using defect engineering strategy which allows more efficient conversion of solar energy to hydrogen. The expected outcomes include h ....Defect Engineering Enabling Efficient Solar Hydrogen Production. The project aims to achieve efficient renewable hydrogen production through solar driven photoelectrochemical water splitting. As a carbon-emission free process, photoelectrochemical water splitting is significant in solar hydrogen supply. The key idea is to design innovative photoelectrode materials using defect engineering strategy which allows more efficient conversion of solar energy to hydrogen. The expected outcomes include high Solar-to-Hydrogen conversion efficiency on the new materials and cutting-edge knowledge in advanced material design. The success of this project will contribute to the implementation of the Australia's National Hydrogen Strategy and position the nation at the frontier of renewable hydrogen supply technologies.Read moreRead less
Cold catalysis for water splitting. This project aims to develop photocatalysts via AC magnetic field through nanoscale heating for efficient H2 generation. This project is to introduce cold catalysis concept, which heats catalysts only but not solution, thus called cold catalysis, in the area of production of renewable energy. Expected outcome is the creation of clean and low cost catalysts to effectively harvest the chemical energy from the sun via splitting of water into H2 and O2 without cau ....Cold catalysis for water splitting. This project aims to develop photocatalysts via AC magnetic field through nanoscale heating for efficient H2 generation. This project is to introduce cold catalysis concept, which heats catalysts only but not solution, thus called cold catalysis, in the area of production of renewable energy. Expected outcome is the creation of clean and low cost catalysts to effectively harvest the chemical energy from the sun via splitting of water into H2 and O2 without causing any environmental damage. This unique technology will also help to address clean energy generation, which is in line with H2 economy plan by Australia government, and provide opportunities for new industries that will benefit Australian economy.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100126
Funder
Australian Research Council
Funding Amount
$150,000.00
Summary
An integrated kinetic measurement system enabling efficient solar energy conversion. This measurement facility will underpin advances in the fundamental understanding of new semiconducting materials for high efficiency light-driven energy conversion systems. The outcomes of the research at the facility will lead to significant economic and environmental benefits for many industries, such as low cost solar cells and water purifications.
Discovery Early Career Researcher Award - Grant ID: DE220100746
Funder
Australian Research Council
Funding Amount
$433,000.00
Summary
Engineering ion specificity for water electrolysis. This project aims to understand how foreign ions in water can be manipulated to selectively control the activity and selectivity of electrocatalytic water splitting and explore the potential if seawater or low-grade-water can be used as water feed to mitigate the economical barrier for large-scale hydrogen production through electrolysis. The new knowledge gained will be helpful for future design of more cost-effective electrolyser systems to u ....Engineering ion specificity for water electrolysis. This project aims to understand how foreign ions in water can be manipulated to selectively control the activity and selectivity of electrocatalytic water splitting and explore the potential if seawater or low-grade-water can be used as water feed to mitigate the economical barrier for large-scale hydrogen production through electrolysis. The new knowledge gained will be helpful for future design of more cost-effective electrolyser systems to underpin Australia’s emerging hydrogen economy.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE220101190
Funder
Australian Research Council
Funding Amount
$418,292.00
Summary
Designing low-toxicity and stable perovskites for solar energy conversion. Efficient solar energy conversion systems can significantly promote sustainable and low carbon-emission economy. This project aims to rationally design low-toxic and stable metal halide perovskites for efficient solar hydrogen conversion. The key concept is to design stable lead-free metal halide perovskite semiconductors with superior photophysical properties for solar-driven valuable chemical production. Expected outcom ....Designing low-toxicity and stable perovskites for solar energy conversion. Efficient solar energy conversion systems can significantly promote sustainable and low carbon-emission economy. This project aims to rationally design low-toxic and stable metal halide perovskites for efficient solar hydrogen conversion. The key concept is to design stable lead-free metal halide perovskite semiconductors with superior photophysical properties for solar-driven valuable chemical production. Expected outcomes include new generation advanced materials and proof-of-concept technologies for efficient solar hydrogen generation. The successful completion of this project will benefit Australia by positioning the nation at the frontier of advanced functional materials and renewable energy supply technologies.Read moreRead less
Anodisation methods and materials for solar water splitting. This project aims to convert and chemically store solar energy as hydrogen. Photoactive materials could harness solar energy. With fabrication methods, these thin films often suffer from poor charge transport and stability, hindering their wider application. Fabrication by anodization could potentially overcome these problems. This project will develop thin film fabrication methods based on anodization that synthesise robust, nanostruc ....Anodisation methods and materials for solar water splitting. This project aims to convert and chemically store solar energy as hydrogen. Photoactive materials could harness solar energy. With fabrication methods, these thin films often suffer from poor charge transport and stability, hindering their wider application. Fabrication by anodization could potentially overcome these problems. This project will develop thin film fabrication methods based on anodization that synthesise robust, nanostructured films with efficient compositions and structures. This will lead to photoelectrodes for efficient solar hydrogen generation, crucial for a sustainable energy future. It will also develop general design principles for photoelectrodes for devices.Read moreRead less
Design and exploration of novel p-block materials for visible light photocatalysis. This project aims to design and explore novel visible light p-block photocatalysts through in depth surface studies of materials at an atomic level. A new strategy of band structure engineering and in-situ investigation of atomic-level photocatalytic dynamics will be the key elements in this research which is expected to yield several novel visible light photocatalysts. The outcome of the project will be the unde ....Design and exploration of novel p-block materials for visible light photocatalysis. This project aims to design and explore novel visible light p-block photocatalysts through in depth surface studies of materials at an atomic level. A new strategy of band structure engineering and in-situ investigation of atomic-level photocatalytic dynamics will be the key elements in this research which is expected to yield several novel visible light photocatalysts. The outcome of the project will be the understanding of processes and mechanisms underlying the photocatalysis and building the foundation of usable, stable, and durable visible-light photocatalytic applications.Read moreRead less
Two-dimensional plasmonic heterogeneous nanostructures for photocatalysis. This project aims to design and explore two-dimensional heterogeneous photocatalysts that can convert solar energy into usable chemical energy. This project will investigate the correlation between surface plasmonic resonance and photocatalytic activities on the atomic level. Heterogeneous engineering and in-situ investigation of atomic-level photocatalytic dynamics is expected to yield several new full-solar-spectrum pho ....Two-dimensional plasmonic heterogeneous nanostructures for photocatalysis. This project aims to design and explore two-dimensional heterogeneous photocatalysts that can convert solar energy into usable chemical energy. This project will investigate the correlation between surface plasmonic resonance and photocatalytic activities on the atomic level. Heterogeneous engineering and in-situ investigation of atomic-level photocatalytic dynamics is expected to yield several new full-solar-spectrum photocatalysts. The project is expected to contribute to the understanding of the processes and mechanisms underlying photocatalysis, and lead to useable, stable and durable photocatalytics. The outcomes will enable efficient, cost-effective and reliable production of clean energy in a low-emission way.Read moreRead less
Sodium borohydride for solid-state green hydrogen export. This project aims to develop a new method of producing, storing, and exporting green hydrogen using Australian resources. Sodium borohydride will be produced from borax using renewable energy and exported internationally to countries that desire hydrogen from renewable sources to replace fossil fuels. Green hydrogen will be released from sodium borohydride by adding water. The spent material will then be shipped back to Australia for recy ....Sodium borohydride for solid-state green hydrogen export. This project aims to develop a new method of producing, storing, and exporting green hydrogen using Australian resources. Sodium borohydride will be produced from borax using renewable energy and exported internationally to countries that desire hydrogen from renewable sources to replace fossil fuels. Green hydrogen will be released from sodium borohydride by adding water. The spent material will then be shipped back to Australia for recycling back to sodium borohydride, creating a closed-loop energy cycle using renewable energy. This will create a new export industry in Australia by expanding current mining expertise whilst harnessing our wealth of renewable energy to potentially deliver billions of dollars of revenue.Read moreRead less
Defect control for high-performance green kesterites energy materials. This project will tackle the fundamental challenge of defect control of the quaternary compound kesterite, revolutionizing the way we can understand the hidden defect-evolution process and design accordingly effective defect-control approaches. This will be realized by a systematic approach integrating multiscale materials characterization, process and materials modeling, and linking microscopic local chemical potential and m ....Defect control for high-performance green kesterites energy materials. This project will tackle the fundamental challenge of defect control of the quaternary compound kesterite, revolutionizing the way we can understand the hidden defect-evolution process and design accordingly effective defect-control approaches. This will be realized by a systematic approach integrating multiscale materials characterization, process and materials modeling, and linking microscopic local chemical potential and macroscopic processing conditions, and associated compound properties and device performance to control defects evolution. Successfully achieved, this project will realize full potential of kesterite in photovoltaic and photoelectrochemical applications, and leading to new discoveries in other compound energy materials.Read moreRead less