Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100099
Funder
Australian Research Council
Funding Amount
$290,000.00
Summary
A complete near-field scanning optical microscope for advanced characterisation of novel and functional materials. This near-field optical scanning microscope will be unique in Australia and will substantially enhance national research capabilities in functional materials, nanotechnology, biotechnology and chemistry. It will create a platform to advance Australian research to new levels in pharmaceuticals, nanomaterials and energy storage materials.
Linkage Infrastructure, Equipment And Facilities - Grant ID: Le110100094
Funder
Australian Research Council
Summary
Selective laser melting - an advanced manufacturing and physical modelling technology for the digital age. Selective laser melting is a new manufacturing technology that creates parts layer by layer directly from a computer model, eliminating the need for tooling or machining. This technology will be applied to a diverse range of research areas from producing the next generation of medical implants and devices to improving our understanding of geo-materials.
Discovery Early Career Researcher Award - Grant ID: DE220100816
Funder
Australian Research Council
Funding Amount
$430,000.00
Summary
Liquid Metal Nano Metallurgy by Controlled Phase Transition Thermodynamics. The phase transformation thermodynamics of post-transition metals, which form low-melting-point alloys, remain largely unknown. This project aims to explore low-energy metallurgy pathways enabled by liquid metals to discover such dynamics. The strategy is to harvest structured/crystalline materials by incorporating target metal species into liquid metal solvents and stimulating autonomous phase separation and pattern for ....Liquid Metal Nano Metallurgy by Controlled Phase Transition Thermodynamics. The phase transformation thermodynamics of post-transition metals, which form low-melting-point alloys, remain largely unknown. This project aims to explore low-energy metallurgy pathways enabled by liquid metals to discover such dynamics. The strategy is to harvest structured/crystalline materials by incorporating target metal species into liquid metal solvents and stimulating autonomous phase separation and pattern formation during phase transition. Contemporary instruments and technologies will be employed to achieve active control of these fundamental processes at different scales. The expected outcomes will reveal new insights in traditional metallurgy as well as extend metallurgical concepts to electronics, optics, and catalysis.Read moreRead less
Stronger zinc alloys for more flexible biodegradable stents. This project aims to develop stronger zinc alloys for a new class of biodegradable metallic stents. A key challenge for biodegradable stent technology is to make stents as thin as possible while also being strong. This project will develop ultra-high strength zinc alloys that can be used to fabricate thinner biodegradable stents for easier surgical operation. The project outcomes should be a major step in the design and development of ....Stronger zinc alloys for more flexible biodegradable stents. This project aims to develop stronger zinc alloys for a new class of biodegradable metallic stents. A key challenge for biodegradable stent technology is to make stents as thin as possible while also being strong. This project will develop ultra-high strength zinc alloys that can be used to fabricate thinner biodegradable stents for easier surgical operation. The project outcomes should be a major step in the design and development of a new generation of biodegradable stents that will avoid the risks associated with existing products and potentially create a better life for millions of patients worldwide.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE140100188
Funder
Australian Research Council
Funding Amount
$390,572.00
Summary
Understanding failure mechanisms in micro-solder joints in three dimensional integrated circuit packaging. High-density three-dimensional integrated circuits used in microelectronic devices are evolving and placing increasing demands on micro-solder joints. Tin based lead-free solder alloys require further development to satisfy performance requirements, particularly with respect to the properties of the intermetallic forms between solder and substrate. This project investigates the mechanical p ....Understanding failure mechanisms in micro-solder joints in three dimensional integrated circuit packaging. High-density three-dimensional integrated circuits used in microelectronic devices are evolving and placing increasing demands on micro-solder joints. Tin based lead-free solder alloys require further development to satisfy performance requirements, particularly with respect to the properties of the intermetallic forms between solder and substrate. This project investigates the mechanical properties and deformation mechanisms of intermetallic forms with trace element additions using micro-pillar compression and ultra-high voltage transmission electron microscopy. Beyond the development of techniques transferable to similar research, this project will lead to significant intellectual property relating to solder composition.Read moreRead less
Super-formable magnesium and its alloys at room temperature. This project aims to reveal the origin of a new phenomenon that we recently discovered: intrinsically brittle magnesium becomes super-formable at room temperature when its grain size is reduced to about one micron. It will use state-of-the-art atomic-scale characterization and computation to determine the mechanisms underlying the phenomenon, and to explore some as yet uncharted dilute alloy composition territories for unprecedented fo ....Super-formable magnesium and its alloys at room temperature. This project aims to reveal the origin of a new phenomenon that we recently discovered: intrinsically brittle magnesium becomes super-formable at room temperature when its grain size is reduced to about one micron. It will use state-of-the-art atomic-scale characterization and computation to determine the mechanisms underlying the phenomenon, and to explore some as yet uncharted dilute alloy composition territories for unprecedented formability. Expected outcomes are likely to form the scientific basis and a new pathway for designing and developing a new generation of wrought magnesium alloys.Read moreRead less
Porous beta-titanium bone implants optimised for strength and bio-compatibility: design and fabrication. The project aims to develop the scaffold-design and manufacturing techniques that will underpin the next generation of bone implants. The scaffolds will be specifically designed to match the key biomechanical properties of bone, and fabricated from novel titanium alloys using the latest generation of advanced manufacturing technologies.
Towards use-as-manufactured titanium alloys for additive manufacturing. Australian manufacturers of 3D printed titanium products face grand challenges in affordably producing useable and reliable as-printed products because the 3D printing process may create unfavourable material characteristics. To ensure products meet acceptance criteria, manufacturers usually apply expensive and time-consuming post processes such as heat treatment. This project aims to discover how alloy composition can be mo ....Towards use-as-manufactured titanium alloys for additive manufacturing. Australian manufacturers of 3D printed titanium products face grand challenges in affordably producing useable and reliable as-printed products because the 3D printing process may create unfavourable material characteristics. To ensure products meet acceptance criteria, manufacturers usually apply expensive and time-consuming post processes such as heat treatment. This project aims to discover how alloy composition can be modified to produce more favourable material characteristics directly from 3D printing, preventing the need for post processing. Australian manufacturers will likely benefit through a streamlined manufacturing process resulting in increased profitability in existing markets as well as expansion into new global markets.Read moreRead less
Structure-mechanical property relationships for bulk metallic glasses. This project aims to make developments in producing high toughness bulk metallic glasses (BMGs) by understanding their processing-structure-fracture toughness relationships. The project expects to generate new knowledge about how to control fracture toughness of BMGs via thermomechanical processing, how to characterise the nanoscale glassy structure using novel microscopy methods, and the mechanistic connection between struct ....Structure-mechanical property relationships for bulk metallic glasses. This project aims to make developments in producing high toughness bulk metallic glasses (BMGs) by understanding their processing-structure-fracture toughness relationships. The project expects to generate new knowledge about how to control fracture toughness of BMGs via thermomechanical processing, how to characterise the nanoscale glassy structure using novel microscopy methods, and the mechanistic connection between structure and fracture toughness. Expected outcomes will be an enhanced capacity to develop and commercialise BMGs with mechanical properties superior to conventional metals. Anticipated benefits will be improved products for the transportation, aerospace, defence, biomedical devices, and three-dimensional printing industries.Read moreRead less
Approaching near-ideal strength for bulk amorphous metals. This project aims to develop a novel metal materials design strategy to break the strength ceilings of nanocrystalline metals and bulk metallic glasses. This strategy is based on a novel concept of synergy between a bulk amorphous matrix and phase-transforming nanocrystallites embedded within. The nanocrystallites, via their uniform transformation lattice distortion, prevent the formation of shear bands in the amorphous matrix and enable ....Approaching near-ideal strength for bulk amorphous metals. This project aims to develop a novel metal materials design strategy to break the strength ceilings of nanocrystalline metals and bulk metallic glasses. This strategy is based on a novel concept of synergy between a bulk amorphous matrix and phase-transforming nanocrystallites embedded within. The nanocrystallites, via their uniform transformation lattice distortion, prevent the formation of shear bands in the amorphous matrix and enable collective atomic load transfer to allow the amorphous matrix to continue to load to achieve its intrinsic near-ideal strength. The amorphous matrix eliminates the grain boundary plasticity of the nanoscrystallites. This concept is novel and untested in the history of physical metallurgy.Read moreRead less