Unravelling structure-function relationships in high mobility donor-acceptor co-polymers. This project seeks to understand the high-performance of a new generation of semiconducting plastics. This research will enable the development of low-cost printed electronics such as flexible displays and sensors.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100188
Funder
Australian Research Council
Funding Amount
$1,000,000.00
Summary
Epitaxial growth facility for advanced materials. An advanced materials fabrication facility accessible to all Australian researchers will be established. This will allow crystal growth at the atomic level for novel materials with applications including fundamental physics, nanocomposites, energy storage and conversion systems, and solar cells.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE170100072
Funder
Australian Research Council
Funding Amount
$600,000.00
Summary
Facility for exploring light-matter interactions in space, time and energy. This project aims to create a readily accessible facility consisting of a suite of tools to study light-matter interactions in materials, molecules and biological systems. Understanding light-matter interactions offers insight into the properties of nano- and biomaterials. The project intends to combine local probes and pump-probe spectroscopy methods for studying nanoscale femtosecond dynamics. It will be accessible to ....Facility for exploring light-matter interactions in space, time and energy. This project aims to create a readily accessible facility consisting of a suite of tools to study light-matter interactions in materials, molecules and biological systems. Understanding light-matter interactions offers insight into the properties of nano- and biomaterials. The project intends to combine local probes and pump-probe spectroscopy methods for studying nanoscale femtosecond dynamics. It will be accessible to a broad user base, cementing Australia’s leadership in ultrafast spectroscopy techniques and nano/bio-materials. The facility will provide a window to the quantum nanoworld, with potential for developing new energy efficient light sources, light-harvesting systems and sensors.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE220100816
Funder
Australian Research Council
Funding Amount
$430,000.00
Summary
Liquid Metal Nano Metallurgy by Controlled Phase Transition Thermodynamics. The phase transformation thermodynamics of post-transition metals, which form low-melting-point alloys, remain largely unknown. This project aims to explore low-energy metallurgy pathways enabled by liquid metals to discover such dynamics. The strategy is to harvest structured/crystalline materials by incorporating target metal species into liquid metal solvents and stimulating autonomous phase separation and pattern for ....Liquid Metal Nano Metallurgy by Controlled Phase Transition Thermodynamics. The phase transformation thermodynamics of post-transition metals, which form low-melting-point alloys, remain largely unknown. This project aims to explore low-energy metallurgy pathways enabled by liquid metals to discover such dynamics. The strategy is to harvest structured/crystalline materials by incorporating target metal species into liquid metal solvents and stimulating autonomous phase separation and pattern formation during phase transition. Contemporary instruments and technologies will be employed to achieve active control of these fundamental processes at different scales. The expected outcomes will reveal new insights in traditional metallurgy as well as extend metallurgical concepts to electronics, optics, and catalysis.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100223
Funder
Australian Research Council
Funding Amount
$340,000.00
Summary
Advanced X-ray diffraction facility for high energy and extreme conditions. X-ray powder diffraction is a powerful technique for determining the structure of matter at the atomic scale. This project will establish a new Australian capability for X-ray powder diffraction under extreme conditions that emulate real harsh service environments for advanced functional materials.
Australian Laureate Fellowships - Grant ID: FL180100029
Funder
Australian Research Council
Funding Amount
$2,545,000.00
Summary
Nanoionics: Engineering ion transport with two-dimensional materials. This project aims to use graphene and other emerging two-dimensional materials to investigate and manipulate ion transport in nanoscale channels. Nanoionics focuses on understanding ions for transport and storage in nanoscale systems, central to numerous technologies related to water, energy and biomedicine. The project will provide sophisticated methods for revolutionary technological innovations to solve problems in several ....Nanoionics: Engineering ion transport with two-dimensional materials. This project aims to use graphene and other emerging two-dimensional materials to investigate and manipulate ion transport in nanoscale channels. Nanoionics focuses on understanding ions for transport and storage in nanoscale systems, central to numerous technologies related to water, energy and biomedicine. The project will provide sophisticated methods for revolutionary technological innovations to solve problems in several industries including manufacturing, mining, water management and bioengineering. Providing access to previously unavailable structures and materials, the project will support Australia’s manufacturing sector by transforming established industries with next generation technologies. The project will also build capacity of nanoionics engineers and provide intellectual property for commercialised products.Read moreRead less
Multilayer thin film memristors: designing interfaces and defect states in perovskites for nanoscale multi-state memories. This project will explore memristive devices, a frontier electronic memory technology, where the memory element's behaviour depends on its prior electronic experiences. This project will attempt to understand the processes that govern the storage and recall of information, to realise functional materials and interfaces that maximise memristive performance.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE130100072
Funder
Australian Research Council
Funding Amount
$350,000.00
Summary
An x-ray scattering facility for advanced characterisation of natural and novel materials. This project will establish an analytical facility that will enable measurement of the atomic and finescale structure of materials. This facility will be used to help design novel materials for industrial, environmental and biomedical applications and to develop green technologies and processes for energy production and mining.
Defect generation in hetero-epitaxy on lattice mismatched substrates. High quality lattice mismatched semiconductor heterostructures are core enabling technologies for next generation electronic and optoelectronic devices with new functions and features such as monolithic integration, lower production costs, larger wafer size, and better system robustness. This project will generate new science on defect generation in lattice mismatched hetero-epitaxy with the aim of developing novel strategies ....Defect generation in hetero-epitaxy on lattice mismatched substrates. High quality lattice mismatched semiconductor heterostructures are core enabling technologies for next generation electronic and optoelectronic devices with new functions and features such as monolithic integration, lower production costs, larger wafer size, and better system robustness. This project will generate new science on defect generation in lattice mismatched hetero-epitaxy with the aim of developing novel strategies for their minimisation. The direct outcome will be higher quality HgCdTe materials on lattice mismatched Si or III-V substrates with defect density low enough for fabricating high performance mid-wave and long-wave infrared arrays with features of lower cost, larger array format size, and higher operating temperature.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: De190100219
Funder
Australian Research Council
Summary
Engineering of exotic electronic properties in atomically thin antimony. This project aims to introduce a new method of engineering electronic resistance properties of materials to reduce energy consumption in computation. Next-generation electronic devices require materials hosting current at near-zero resistance to reduce energy consumption and heat dissipation in computation. Using a novel air-stable topological material, the project will use band engineering techniques to enable the producti ....Engineering of exotic electronic properties in atomically thin antimony. This project aims to introduce a new method of engineering electronic resistance properties of materials to reduce energy consumption in computation. Next-generation electronic devices require materials hosting current at near-zero resistance to reduce energy consumption and heat dissipation in computation. Using a novel air-stable topological material, the project will use band engineering techniques to enable the production of near-zero resistance electronic material. This project will advance the knowledge required for exploring and designing materials with novel electronic properties. The advanced materials engineering techniques and exotic phase of matter identified in this project will support the development of next-generation electronic device technologies.Read moreRead less