Development of novel safe lithium metal-free sulphur batteries. Development of novel safe lithium metal-free sulphur batteries. This project aims to develop a lithium-metal-free sulphur battery system, and technology to commercialise this battery technology. Expected outcomes include an electrochemical system consisting of a selected promising lithium sulphide cathode, an alloying type anode and a liquid-based electrolyte, and large lithium-ion sulphur batteries with selected advanced electrode ....Development of novel safe lithium metal-free sulphur batteries. Development of novel safe lithium metal-free sulphur batteries. This project aims to develop a lithium-metal-free sulphur battery system, and technology to commercialise this battery technology. Expected outcomes include an electrochemical system consisting of a selected promising lithium sulphide cathode, an alloying type anode and a liquid-based electrolyte, and large lithium-ion sulphur batteries with selected advanced electrode materials and electrolytes. Anticipated outcomes are the improved safety of typical lithium-sulphur batteries; that Australia will be internationally competitive in the area of energy storage; and increased overseas demand for Australian raw materials for manufacturing lithium-ion batteries.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE170100137
Funder
Australian Research Council
Funding Amount
$358,275.00
Summary
Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental conc ....Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental concepts, and enable combinatorial search and new thin film technology. It is anticipated that this facility will increase Australia’s international competitiveness in the development of advanced energy materials.Read moreRead less
Cost-effective metal selenide materials for solid-state devices. Thermoelectric materials, directly converting thermal energy into electrical energy, offer a green and sustainable solution for the global energy dilemma. This project aims to develop cost-effective metal selenide materials for high-efficiency solid-state devices using a novel industry-level approach, coupled with nanostructure and band engineering strategies. The key breakthrough is to design high-performance metal selenide thermo ....Cost-effective metal selenide materials for solid-state devices. Thermoelectric materials, directly converting thermal energy into electrical energy, offer a green and sustainable solution for the global energy dilemma. This project aims to develop cost-effective metal selenide materials for high-efficiency solid-state devices using a novel industry-level approach, coupled with nanostructure and band engineering strategies. The key breakthrough is to design high-performance metal selenide thermoelectric materials with engineered chemistry and unique structures for new generation thermoelectrics. The expected outcomes will lead to an innovative technology for harvesting electricity from waste heat or sunlight, which will place Australia at the forefront of energy and manufacturing technologies.Read moreRead less
Bio-inspired two-dimensional nanomaterials for sustainable applications. This project aims to design multifunctional nanomaterials in the form of two-dimensional (2D) structures or architectures with targeted extraordinary bio-mimicking functions for sustainable development and energy applications by learning the best from nature. Millions of years of evolution and natural selection have turned the biological world into an effective materials-development laboratory. The project expects to enhanc ....Bio-inspired two-dimensional nanomaterials for sustainable applications. This project aims to design multifunctional nanomaterials in the form of two-dimensional (2D) structures or architectures with targeted extraordinary bio-mimicking functions for sustainable development and energy applications by learning the best from nature. Millions of years of evolution and natural selection have turned the biological world into an effective materials-development laboratory. The project expects to enhance research and innovation in materials science, nanotechnology, and biological science, and lead to advances in the chemical industry and sustainable environmental and energy applications in Australia. Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100126
Funder
Australian Research Council
Funding Amount
$150,000.00
Summary
An integrated kinetic measurement system enabling efficient solar energy conversion. This measurement facility will underpin advances in the fundamental understanding of new semiconducting materials for high efficiency light-driven energy conversion systems. The outcomes of the research at the facility will lead to significant economic and environmental benefits for many industries, such as low cost solar cells and water purifications.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100017
Funder
Australian Research Council
Funding Amount
$300,000.00
Summary
An integrated system for measuring thermoelectric properties of advanced materials. This facility will establish an integrated measuring system which will form the key step in developing thermoelectric materials. The instruments will support groundbreaking research in developing advanced materials with significant economic and environmental benefits for many industries, such as materials manufacturing and improving automobile energy efficiency.
Self-cleaning thin films for anti-reflective solar cell coatings. This project addresses an important industry need by designing a new class of functional composite coatings for efficiency and durability improvement of solar cells. A successful outcome will provide an important breakthrough in thin film technology applicable not only to solar panels but also other coating applications.
Lithium-air battery: a green energy source for the sustainable future. Electrification of vehicles and the implementation of smart electric grids can dramatically reduce greenhouse gas emissions and realise sustainable development. Lithium-air batteries have the highest energy density among all battery systems and are therefore a promising power source for electric vehicles and stationary energy storage.
High energy density, long life, safe lithium Ion battery for electric cars. This project aims to develop next-generation lithium-ion batteries with high energy density, safety, long cycle life, and fast charge capability, using a Ni-rich layered oxide cathode and silicon/carbon composite anode. This lithium-ion battery system is expected to meet 2020 targets for electric vehicles. The project will also investigate the reaction/electrode fading mechanism of the proposed anode/cathode materials fo ....High energy density, long life, safe lithium Ion battery for electric cars. This project aims to develop next-generation lithium-ion batteries with high energy density, safety, long cycle life, and fast charge capability, using a Ni-rich layered oxide cathode and silicon/carbon composite anode. This lithium-ion battery system is expected to meet 2020 targets for electric vehicles. The project will also investigate the reaction/electrode fading mechanism of the proposed anode/cathode materials for the deep understanding of these electrode materials, and provide guidance for future electrode materials design and battery research. This will provide significant benefits for automotive industries, smart grid, and business in storing renewable energy and better environment and sustainability.Read moreRead less
Tailoring smart film for energy efficient protected cropping. Cooling cost represents a major running cost for greenhouse, preventing the wide adoption of highly beneficial protected cropping technology. This project aims at solving this critical issue by developing a world-first tailored smart film that can simultaneously reject solar heat, cool down the greenhouse and maximise the yields of crops. This is made possible by advanced spectral engineering and light management with frontier nanostr ....Tailoring smart film for energy efficient protected cropping. Cooling cost represents a major running cost for greenhouse, preventing the wide adoption of highly beneficial protected cropping technology. This project aims at solving this critical issue by developing a world-first tailored smart film that can simultaneously reject solar heat, cool down the greenhouse and maximise the yields of crops. This is made possible by advanced spectral engineering and light management with frontier nanostructures combined with a scalable and low cost manufacturing process. Deliverables of the project include game-changing energy efficient solutions for protected cropping and marketable smart films readily integratable with existing greenhouse for dramatic energy saving and immediate economic and social benefits.Read moreRead less