Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100069
Funder
Australian Research Council
Funding Amount
$200,000.00
Summary
A complete thermo-electric characterisation facility for exploration of novel materials and devices at high temperatures. This high temperature materials’ characterisation facility will be the most advanced measurement setup of its kind in Australia. The unique features of the equipment and its high versatility will substantially enhance national research capabilities in functional materials, metal engineering, manufacturing engineering, chemistry, and physics.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE170100137
Funder
Australian Research Council
Funding Amount
$358,275.00
Summary
Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental conc ....Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental concepts, and enable combinatorial search and new thin film technology. It is anticipated that this facility will increase Australia’s international competitiveness in the development of advanced energy materials.Read moreRead less
Sodium-ion batteries for renewable energy storage. This project aims to develop sodium-ion batteries for renewable energy storage and conversion. Electrical energy storage is important for integrating renewable energy sources, improving grid reliability, and intelligently managing peak demand. Sodium-ion batteries are promising for large scale energy storage applications because of low cost and natural abundance of sodium. This project will integrate materials architecture design, synthesise cat ....Sodium-ion batteries for renewable energy storage. This project aims to develop sodium-ion batteries for renewable energy storage and conversion. Electrical energy storage is important for integrating renewable energy sources, improving grid reliability, and intelligently managing peak demand. Sodium-ion batteries are promising for large scale energy storage applications because of low cost and natural abundance of sodium. This project will integrate materials architecture design, synthesise cathode materials, model and test electrochemistry, and make prototype batteries. This project is expected to help the Government meet its renewable energy target, improve utilities’ power quality and reliability, create industry opportunities, and maintain Australia’s high standing in energy research.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100017
Funder
Australian Research Council
Funding Amount
$300,000.00
Summary
An integrated system for measuring thermoelectric properties of advanced materials. This facility will establish an integrated measuring system which will form the key step in developing thermoelectric materials. The instruments will support groundbreaking research in developing advanced materials with significant economic and environmental benefits for many industries, such as materials manufacturing and improving automobile energy efficiency.
In pursuit of high performance lithium-oxygen batteries. This project aims to achieve high-energy lithium-oxygen batteries for electric vehicles. Electrification of road transport will minimise consumption of fossil fuels, reduce carbon dioxide emissions, and increase energy security. Lithium-oxygen batteries have the highest energy density among all rechargeable battery systems, which is more than 10 times the density of current lithium-ion batteries. Through exploration of new catalysts, redox ....In pursuit of high performance lithium-oxygen batteries. This project aims to achieve high-energy lithium-oxygen batteries for electric vehicles. Electrification of road transport will minimise consumption of fossil fuels, reduce carbon dioxide emissions, and increase energy security. Lithium-oxygen batteries have the highest energy density among all rechargeable battery systems, which is more than 10 times the density of current lithium-ion batteries. Through exploration of new catalysts, redox mediators, and porous material architectures, this project intends to significantly improve the performance of lithium-oxygen batteries, including specific capacity, cycle life and round-trip efficiency.Read moreRead less
Design and exploration of novel p-block materials for visible light photocatalysis. This project aims to design and explore novel visible light p-block photocatalysts through in depth surface studies of materials at an atomic level. A new strategy of band structure engineering and in-situ investigation of atomic-level photocatalytic dynamics will be the key elements in this research which is expected to yield several novel visible light photocatalysts. The outcome of the project will be the unde ....Design and exploration of novel p-block materials for visible light photocatalysis. This project aims to design and explore novel visible light p-block photocatalysts through in depth surface studies of materials at an atomic level. A new strategy of band structure engineering and in-situ investigation of atomic-level photocatalytic dynamics will be the key elements in this research which is expected to yield several novel visible light photocatalysts. The outcome of the project will be the understanding of processes and mechanisms underlying the photocatalysis and building the foundation of usable, stable, and durable visible-light photocatalytic applications.Read moreRead less
In pursuit of high performance lithium-oxygen batteries. This project aims to achieve high-energy lithium-oxygen batteries for electric vehicles. Electrification of road transport will minimise consumption of fossil fuels, reduce carbon dioxide emissions, and increase energy security. Lithium-oxygen batteries have the highest energy density among all rechargeable battery systems, which is more than 10 times the density of current lithium-ion batteries. Through exploration of new catalysts, redox ....In pursuit of high performance lithium-oxygen batteries. This project aims to achieve high-energy lithium-oxygen batteries for electric vehicles. Electrification of road transport will minimise consumption of fossil fuels, reduce carbon dioxide emissions, and increase energy security. Lithium-oxygen batteries have the highest energy density among all rechargeable battery systems, which is more than 10 times the density of current lithium-ion batteries. Through exploration of new catalysts, redox mediators, and porous material architectures, this project intends to significantly improve the performance of lithium-oxygen batteries, including specific capacity, cycle life and round-trip efficiency.Read moreRead less
Nanostructure engineered iron-based superconductors. This project is focused on establishing Australia as a world authority in the field of novel Fe-based superconductors by utilising unique sample fabrication methods and a network of world renowned experts. It will provide excellent postgraduate student training to foster development of new outstanding specialists in this challenging research field.
New generation high efficiency thermoelectric materials and modules for waste heat recovery in steelworks. The development of thermoelectric materials and devices, and their subsequent uptake by the steel industry, will bring tremendous socio-economic benefits in terms of decreased operational costs, a significantly reduced carbon footprint and will set an excellent example for other industries on how to comply with strict environmental regulations.
Linkage Infrastructure, Equipment And Facilities - Grant ID: Le170100137
Funder
Australian Research Council
Summary
Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental conc ....Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental concepts, and enable combinatorial search and new thin film technology. It is anticipated that this facility will increase Australia’s international competitiveness in the development of advanced energy materials.Read moreRead less