Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100099
Funder
Australian Research Council
Funding Amount
$290,000.00
Summary
A complete near-field scanning optical microscope for advanced characterisation of novel and functional materials. This near-field optical scanning microscope will be unique in Australia and will substantially enhance national research capabilities in functional materials, nanotechnology, biotechnology and chemistry. It will create a platform to advance Australian research to new levels in pharmaceuticals, nanomaterials and energy storage materials.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100188
Funder
Australian Research Council
Funding Amount
$1,000,000.00
Summary
Epitaxial growth facility for advanced materials. An advanced materials fabrication facility accessible to all Australian researchers will be established. This will allow crystal growth at the atomic level for novel materials with applications including fundamental physics, nanocomposites, energy storage and conversion systems, and solar cells.
New hierarchical electrode design for high-power lithium ion batteries. This project aims to develop new types of hierarchical electrodes for high-rate lithium ion batteries with long cycling life. The key concepts are the development of multi-shelled hollow structured silicon-based anode and Li-rich layered oxides cathode to achieve both high power and energy density, and the adoption of graphene to further improve rate capability and cycling stability. Effective energy storage systems play an ....New hierarchical electrode design for high-power lithium ion batteries. This project aims to develop new types of hierarchical electrodes for high-rate lithium ion batteries with long cycling life. The key concepts are the development of multi-shelled hollow structured silicon-based anode and Li-rich layered oxides cathode to achieve both high power and energy density, and the adoption of graphene to further improve rate capability and cycling stability. Effective energy storage systems play an important role in the development of renewable energies and electric vehicles. The project outcomes will lead to innovative technologies in low carbon emission transportation and efficient energy storage systems.Read moreRead less
Development of novel safe lithium metal-free sulphur batteries. Development of novel safe lithium metal-free sulphur batteries. This project aims to develop a lithium-metal-free sulphur battery system, and technology to commercialise this battery technology. Expected outcomes include an electrochemical system consisting of a selected promising lithium sulphide cathode, an alloying type anode and a liquid-based electrolyte, and large lithium-ion sulphur batteries with selected advanced electrode ....Development of novel safe lithium metal-free sulphur batteries. Development of novel safe lithium metal-free sulphur batteries. This project aims to develop a lithium-metal-free sulphur battery system, and technology to commercialise this battery technology. Expected outcomes include an electrochemical system consisting of a selected promising lithium sulphide cathode, an alloying type anode and a liquid-based electrolyte, and large lithium-ion sulphur batteries with selected advanced electrode materials and electrolytes. Anticipated outcomes are the improved safety of typical lithium-sulphur batteries; that Australia will be internationally competitive in the area of energy storage; and increased overseas demand for Australian raw materials for manufacturing lithium-ion batteries.Read moreRead less
Functionalising sustainable natural binders for energy storage devices. This project aims to produce low-cost energy storage devices to meet the energy demands and safety requirements of electric appliances, electric vehicles and smart electricity grids. High-cost and non-regenerable resources and existing energy storage devices’ safety issues have hindered the electrification of portable electronic devices and vehicles and use of intermittent solar and wind energy. This project will use sustain ....Functionalising sustainable natural binders for energy storage devices. This project aims to produce low-cost energy storage devices to meet the energy demands and safety requirements of electric appliances, electric vehicles and smart electricity grids. High-cost and non-regenerable resources and existing energy storage devices’ safety issues have hindered the electrification of portable electronic devices and vehicles and use of intermittent solar and wind energy. This project will use sustainable natural polymers to develop green electrode technologies for manufacturing batteries with greatly reduced production and environmental cost. The in-depth understandings from the combination of experiments and computation simulations will help create strategies to realise low cost, long-life and safe batteries.Read moreRead less
Industrial Transformation Training Centres - Grant ID: IC180100049
Funder
Australian Research Council
Funding Amount
$4,380,454.00
Summary
ARC Training Centre for Future Energy Storage Technologies. The ARC Training Centre for Future Energy Storage Technologies aims to equip the next generation of researchers and the energy technology workforce with the skills needed to drive innovation, exploration and investigation so we safeguard our workers and industries. The Centre aims to challenge existing thinking and expand Australia’s capacity in energy storage and production. The Centre expects to create new knowledge and intellectual p ....ARC Training Centre for Future Energy Storage Technologies. The ARC Training Centre for Future Energy Storage Technologies aims to equip the next generation of researchers and the energy technology workforce with the skills needed to drive innovation, exploration and investigation so we safeguard our workers and industries. The Centre aims to challenge existing thinking and expand Australia’s capacity in energy storage and production. The Centre expects to create new knowledge and intellectual property in advanced energy materials, batteries and battery-control systems for integration into end user industries. This Centre will facilitate small to medium-sized enterprises to take a global leadership role in advancing and producing new age storage technologies. By harnessing the expertise of researchers and industry partners the Centre aims to deliver benefit to our economy, the community and the environment.
Read moreRead less
Sodium-ion batteries for renewable energy storage. This project aims to develop sodium-ion batteries for renewable energy storage and conversion. Electrical energy storage is important for integrating renewable energy sources, improving grid reliability, and intelligently managing peak demand. Sodium-ion batteries are promising for large scale energy storage applications because of low cost and natural abundance of sodium. This project will integrate materials architecture design, synthesise cat ....Sodium-ion batteries for renewable energy storage. This project aims to develop sodium-ion batteries for renewable energy storage and conversion. Electrical energy storage is important for integrating renewable energy sources, improving grid reliability, and intelligently managing peak demand. Sodium-ion batteries are promising for large scale energy storage applications because of low cost and natural abundance of sodium. This project will integrate materials architecture design, synthesise cathode materials, model and test electrochemistry, and make prototype batteries. This project is expected to help the Government meet its renewable energy target, improve utilities’ power quality and reliability, create industry opportunities, and maintain Australia’s high standing in energy research.Read moreRead less
High Performance Monolithic Perovskite Photocapacitors. Monolithic perovskite photocapacitor (MPPC) consisted of integrated energy harvesting perovskite solar cell and energy storage supercapacitor through an internally shared electrode can deliver stable electricity by harnessing solar energy. The performance of MPPC is dependent of properties of the shared electrode materials. This project aims to synthesis carbon materials with tailored surface, electrical and structure properties that are re ....High Performance Monolithic Perovskite Photocapacitors. Monolithic perovskite photocapacitor (MPPC) consisted of integrated energy harvesting perovskite solar cell and energy storage supercapacitor through an internally shared electrode can deliver stable electricity by harnessing solar energy. The performance of MPPC is dependent of properties of the shared electrode materials. This project aims to synthesis carbon materials with tailored surface, electrical and structure properties that are required to make a highly functioning shared electrode in MPPC. The goal is to fabricate stable, high performance MPPC. Successful achievement of the outcomes will enable cost-effective, reliable, solar electricity, placing Australia at the forefront of exploiting photovoltaics technologies.Read moreRead less
2D heterostructures with ultrafast interlayer transport for energy devices. This project aims to design novel 2D heterostructures with ultrafast interlayer transport properties and to modulate the associated optical, electric, catalytic, surface and storage properties by using a combination of experimental and computational approaches for sustainable energy applications, such as fuel generation and energy conversion and storage devices. This project expects to generate new knowledge in materials ....2D heterostructures with ultrafast interlayer transport for energy devices. This project aims to design novel 2D heterostructures with ultrafast interlayer transport properties and to modulate the associated optical, electric, catalytic, surface and storage properties by using a combination of experimental and computational approaches for sustainable energy applications, such as fuel generation and energy conversion and storage devices. This project expects to generate new knowledge in materials science and nanotechnology and make fundamental breakthroughs in new sustainable energy technologies. The outcomes of this project will facilitate the development of novel materials and low-cost sustainable energy in Australia with access to an enormous global market. Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE220100427
Funder
Australian Research Council
Funding Amount
$446,000.00
Summary
Engineered multifunctional membranes for aqueous organic redox flow battery. This project aims to develop multifunctional membranes with high ion conductivity and selectivity and high energy density to address the key challenges in the development of aqueous organic redox flow battery for renewable energy storage. The project will develop novel methodologies for precisely tuning and functionalising microporous materials to achieve cost-effective and scalable fabrication of membranes with multi-f ....Engineered multifunctional membranes for aqueous organic redox flow battery. This project aims to develop multifunctional membranes with high ion conductivity and selectivity and high energy density to address the key challenges in the development of aqueous organic redox flow battery for renewable energy storage. The project will develop novel methodologies for precisely tuning and functionalising microporous materials to achieve cost-effective and scalable fabrication of membranes with multi-functions, thus improving the energy efficiency and retaining the cycling capacity of redox flow batteries. The advancement of multifunctional membranes will enhance the efficiency of storage of intermittent and fluctuating renewable resources, thereby contributing to the reduction of carbon footprint in Australia. Read moreRead less