New nanolaminate ternary and quaternary alloy phases by thin film synthesis. The availability of suitable materials is a driver of new technologies. We will develop a new class of ternary and quaternary alloys with nanolaminate structures at the atomic scale using a combination of theoretical modeling, novel thin film synthesis and advanced characterization methods. The nanostructure of these materials is expected to promote a rare combination of metallic and ceramic like properties, such as low ....New nanolaminate ternary and quaternary alloy phases by thin film synthesis. The availability of suitable materials is a driver of new technologies. We will develop a new class of ternary and quaternary alloys with nanolaminate structures at the atomic scale using a combination of theoretical modeling, novel thin film synthesis and advanced characterization methods. The nanostructure of these materials is expected to promote a rare combination of metallic and ceramic like properties, such as low friction, high mechanical strength, resistance to heat shock, fracture, corrosion and oxidation, up to very high temperatures. Careful characterisation of the growth process and structure-property relationships will allow us to develop methods of tailoring the property mix for operation in harsh environments.Read moreRead less
Modification of optical properties of photocatalytic titania. The aim of the project is to capitalise on and optimise the recently discovered successful modification of the optical properties of titanium oxide (TiO2), such that efficient solar splitting of water is possible. TiO2 photocatalysts of adequate efficiency will be implemented as photoanodes in photoelectrochemical cells capable of large-scale production of hydrogen.
Enhanced pigment weathering resistance by coating with high dielectric ceramic. The partner company, Tiwest, based in Western Australia, is a major contributor to the economy, and earns more than $A400m annually in exports. It is the only company in the world that mines, separates, refines and manufactures titania products, including pigments, in one region. The current post-titania particle formation wet-coating process, however, presents a major capital and recurrent cost and necessitates a pi ....Enhanced pigment weathering resistance by coating with high dielectric ceramic. The partner company, Tiwest, based in Western Australia, is a major contributor to the economy, and earns more than $A400m annually in exports. It is the only company in the world that mines, separates, refines and manufactures titania products, including pigments, in one region. The current post-titania particle formation wet-coating process, however, presents a major capital and recurrent cost and necessitates a pigment regrind stage. The research will investigate the development of a highly durable dry-coated pigment utilising a novel high dielectric coating. This development has the potential to ensure the partner company's future competitiveness through reduced processing costs and improved product performance.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE0775559
Funder
Australian Research Council
Funding Amount
$400,000.00
Summary
16 Tesla Physical Property Measurement System (PPMS). Success of this proposal will enhance national and international collaboration through access to the proposed 16-Tesla PPMS by a large number of collaborating groups. This state-the-art facility will substantially enhance the materials characterisation capability of Australia. Equipped with this 16-Tesla PPMS and other related facilities the Institute for Superconducting and Electronic Materials at the University of Wollongong will continue a ....16 Tesla Physical Property Measurement System (PPMS). Success of this proposal will enhance national and international collaboration through access to the proposed 16-Tesla PPMS by a large number of collaborating groups. This state-the-art facility will substantially enhance the materials characterisation capability of Australia. Equipped with this 16-Tesla PPMS and other related facilities the Institute for Superconducting and Electronic Materials at the University of Wollongong will continue as an important national and international centre for physical property characterisation. It will allow Australian researchers to remain competitive in this important of materials research.Read moreRead less
Some Outstanding Mechanics Problems in Layered Ferroelectromagnetic Composites with Enhanced Magnetoelectric Effect. The proposed research has high impact on both science and technology of ferroelectromagnetic materials. The outcomes will expand Australia's knowledge base and research capability in this emerging field. Relevant industries, such as smart materials and devices, can benefit from the results of this project. The theoretical, experimental and numerical results can be directly transfo ....Some Outstanding Mechanics Problems in Layered Ferroelectromagnetic Composites with Enhanced Magnetoelectric Effect. The proposed research has high impact on both science and technology of ferroelectromagnetic materials. The outcomes will expand Australia's knowledge base and research capability in this emerging field. Relevant industries, such as smart materials and devices, can benefit from the results of this project. The theoretical, experimental and numerical results can be directly transformed to design and application guidelines for the materials engineers and scientists to develop innovative and structurally/functionally reliable ferroelectromagnetic composites and their various devices and products.Read moreRead less
Design of hollow nanoparticles of titania for the sustainable production of hydrogen from water using sunlight. Hydrogen is a clean and non-polluting fuel that is the natural and sustainable replacement for greenhouse gas emitting fossil fuels. Because of its abundant sunlight and vast titanium reserves (the world's largest) Australia is especially well-placed to develop the technology of producing hydrogen directly from water and sunlight using a titanium dioxide photo-anode. This research, whi ....Design of hollow nanoparticles of titania for the sustainable production of hydrogen from water using sunlight. Hydrogen is a clean and non-polluting fuel that is the natural and sustainable replacement for greenhouse gas emitting fossil fuels. Because of its abundant sunlight and vast titanium reserves (the world's largest) Australia is especially well-placed to develop the technology of producing hydrogen directly from water and sunlight using a titanium dioxide photo-anode. This research, which consists of computational and experimental parts, is focused on laying the scientific foundation for that technology to be commercially viable. The national and community benefits are the availability of an inexpensive, limitless and clean fuel, reduction in reliance on energy imports, reduction in greenhouse gas emissions and resultant global warming.Read moreRead less
Nano-Particle Suspension Behaviour in Salt Solutions: Effect of Ion Hydration and Attractive Forces. Understanding and controlling the flow behaviour of nano-particle suspensions is crucial to the processing of ceramics with nano-scale features. Interparticle forces influence the flow behaviour and depend upon the the adsorption of ions to the particle's surface. The proposed research investigates the effect of ion hydration and surface type on ion adsorption, the resulting attractive forces a ....Nano-Particle Suspension Behaviour in Salt Solutions: Effect of Ion Hydration and Attractive Forces. Understanding and controlling the flow behaviour of nano-particle suspensions is crucial to the processing of ceramics with nano-scale features. Interparticle forces influence the flow behaviour and depend upon the the adsorption of ions to the particle's surface. The proposed research investigates the effect of ion hydration and surface type on ion adsorption, the resulting attractive forces and suspension flow behaviour. The outcomes of the project have potential for significant increase in fundamental understanding of the relationship between ions, surfaces and forces. The benefits of this knowledge include producing nano-ceramics with improved properties and better understanding biopolymer behaviour.Read moreRead less
Crystalline Mesoporous Metal Oxides for Solid Oxide Fuel Cell Electrodes. Our crystalline mesoporous electrodes will help realise the full potentials of solid oxide fuel cells. Such advanced fuel cell technology will drastically increase the power generation efficiency, and reduce CO2 emissions from present power plants, thereby transforming Australian energy industry and improving our environment. The design and development of novel crystalline mesoporous materials that find widespread industri ....Crystalline Mesoporous Metal Oxides for Solid Oxide Fuel Cell Electrodes. Our crystalline mesoporous electrodes will help realise the full potentials of solid oxide fuel cells. Such advanced fuel cell technology will drastically increase the power generation efficiency, and reduce CO2 emissions from present power plants, thereby transforming Australian energy industry and improving our environment. The design and development of novel crystalline mesoporous materials that find widespread industrial applications will advance Australia's knowledge and skill base, and help Australia's high-tech industries to stay competitive, including the development of new high-tech industries in Australia.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE180101454
Funder
Australian Research Council
Funding Amount
$359,446.00
Summary
High performance lead-free piezoelectrics based on polar nanoregions. This project aims to enhance the electro-mechanical couplings of lead free piezoelectrics via introducing polar nanoregions for medical transducers applications. This is expected to impact on the design and development of high-performance lead free piezoelectrics, and have environmental benefits through replacing lead based counterparts.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100028
Funder
Australian Research Council
Funding Amount
$720,000.00
Summary
Ultra-high resolution and advanced analytical scanning electron microscope facility. This scanning electron microscope facility will form an essential part of characterising a broad range of material types, from nanometre sized particles through to cells and their interactions.