Enhanced pigment weathering resistance by coating with high dielectric ceramic. The partner company, Tiwest, based in Western Australia, is a major contributor to the economy, and earns more than $A400m annually in exports. It is the only company in the world that mines, separates, refines and manufactures titania products, including pigments, in one region. The current post-titania particle formation wet-coating process, however, presents a major capital and recurrent cost and necessitates a pi ....Enhanced pigment weathering resistance by coating with high dielectric ceramic. The partner company, Tiwest, based in Western Australia, is a major contributor to the economy, and earns more than $A400m annually in exports. It is the only company in the world that mines, separates, refines and manufactures titania products, including pigments, in one region. The current post-titania particle formation wet-coating process, however, presents a major capital and recurrent cost and necessitates a pigment regrind stage. The research will investigate the development of a highly durable dry-coated pigment utilising a novel high dielectric coating. This development has the potential to ensure the partner company's future competitiveness through reduced processing costs and improved product performance.Read moreRead less
Investigation of a series of metallic sustrate materials suitable for developing long Y-Ba-Cu-O superconductors. Aims: Researchers from Institute for Superconducting and Electronic Materials, the University of Wollongong (UoW) & the Dept. Mat. Sci & Eng., University of Cincinnati (UC) in USA will build strong collaborations through joint research on a series of metallic substrate materials. Significance: The research work will contribute to the development of the second generation of high temper ....Investigation of a series of metallic sustrate materials suitable for developing long Y-Ba-Cu-O superconductors. Aims: Researchers from Institute for Superconducting and Electronic Materials, the University of Wollongong (UoW) & the Dept. Mat. Sci & Eng., University of Cincinnati (UC) in USA will build strong collaborations through joint research on a series of metallic substrate materials. Significance: The research work will contribute to the development of the second generation of high temperature superconducting wire technology. Expected outcomes: strengthen international research experience for junior researchers and develop new collaborations between senior researchers from UoW in Australia and UC in USA.Read moreRead less
Australian Laureate Fellowships - Grant ID: FL210100017
Funder
Australian Research Council
Funding Amount
$3,115,000.00
Summary
Nanoscale-interactions making future functional materials more powerful . Traditional crystal chemistry can no longer meet the demands for development of new functional materials - the foundation of modern industry. The program aims to overcome this challenge by introducing a new strategy into experimental and theoretical research to transform our understanding and application of nanoscale structural and chemical features in materials. The program expects to build new crystal chemistry that incl ....Nanoscale-interactions making future functional materials more powerful . Traditional crystal chemistry can no longer meet the demands for development of new functional materials - the foundation of modern industry. The program aims to overcome this challenge by introducing a new strategy into experimental and theoretical research to transform our understanding and application of nanoscale structural and chemical features in materials. The program expects to build new crystal chemistry that includes nanoscale-interaction information and deep machine-learning to improve the predictability of material properties. Potential outcomes of the program include enhanced capacity for revolutionary materials development thus keeping Australia's leading position in innovative technology, benefiting academia and industry.Read moreRead less
Giant Magnetocaloric Materials and Room Temperature Refrigeration. The objectives of this project are to develop new magnetocaloric materials, study their properties and their potential as components of advanced magnetic refrigeration systems. The outcomes of this project will provide an opportunity for Australian industry to produce magnetocaloric materials and magnetic refrigeration systems with higher quality, to embark on this novel innovation technology in an effective way, and to access th ....Giant Magnetocaloric Materials and Room Temperature Refrigeration. The objectives of this project are to develop new magnetocaloric materials, study their properties and their potential as components of advanced magnetic refrigeration systems. The outcomes of this project will provide an opportunity for Australian industry to produce magnetocaloric materials and magnetic refrigeration systems with higher quality, to embark on this novel innovation technology in an effective way, and to access the international magnetic refrigeration market. In the longer term, the successful outcome of this research could lead to energy savings and an overall reduction in greenhouse gas emissions, as well as contributing to the associated economic and social goals.Read moreRead less
Understanding nanostructure in lead-containing piezoceramics - the key to improved and environmentally-friendly materials. Lead-containing piezoelectric ceramics form the basis of multi-billion dollar industries, posing an increasingly serious environmental threat due to the toxicity of lead. By obtaining a detailed understanding of how their properties arise from their nanoscale structure and chemistry, our research will lead to improvements in existing materials and aid the quest for environme ....Understanding nanostructure in lead-containing piezoceramics - the key to improved and environmentally-friendly materials. Lead-containing piezoelectric ceramics form the basis of multi-billion dollar industries, posing an increasingly serious environmental threat due to the toxicity of lead. By obtaining a detailed understanding of how their properties arise from their nanoscale structure and chemistry, our research will lead to improvements in existing materials and aid the quest for environmentally-friendly alternatives. We will use a methodology for the elucidation of local structure and dynamics in which we are world leaders. The project will further enhance our standing in the field, provide excellent research training for students and early-career researchers and highlight the power and potential of Australia's new Synchrotron and OPAL research reactor.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100197
Funder
Australian Research Council
Funding Amount
$375,000.00
Summary
A magnetic property measurement facility for the development of advanced materials and biomedical technologies in the Sydney basin. The measurement of magnetic properties is important in the study both of magnetic and electronic materials and biological systems. This new equipment will support a diverse array of high impact research, spanning the fundamental to the applied, and will bring together complementary expertise from multiple disciplines and institutions.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE0238381
Funder
Australian Research Council
Funding Amount
$100,000.00
Summary
High Sensitivity Broad Range Digitised Electron Microscopy. To install in a central location at Monash University a digital image plate reader and appropriate recording hardware and software as a multi-user facility for high-resolution electron imaging and diffraction. Imaging plates are, in appearance, like photographic film and are used in the electron microscope in the same way. They are, however, nearly a hundred times more sensitive, have a range a hundred thousand times greater, and, when ....High Sensitivity Broad Range Digitised Electron Microscopy. To install in a central location at Monash University a digital image plate reader and appropriate recording hardware and software as a multi-user facility for high-resolution electron imaging and diffraction. Imaging plates are, in appearance, like photographic film and are used in the electron microscope in the same way. They are, however, nearly a hundred times more sensitive, have a range a hundred thousand times greater, and, when interrogated by a reader, generate a digitised output and can then be used again. We propose to exploit those characteristics in the study of advanced materials, in the investigation of phases changes, and in the characterisation of materials not sufficiently stable in the electron beam to observe by more conventional methods.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE0989180
Funder
Australian Research Council
Funding Amount
$150,000.00
Summary
Facility for studying the sorption properties of gases by nanostructured materials. The climate debate has put the issues that this research will address at the forefront of community concern. All of the initiatives discussed herein are relevant to alternative energy sources and greenhouse gas reduction. The facility will ensure that the research undertaken will be internationally cutting edge and will hasten the adoption of technologies that will flow from the research, thereby reducing the e ....Facility for studying the sorption properties of gases by nanostructured materials. The climate debate has put the issues that this research will address at the forefront of community concern. All of the initiatives discussed herein are relevant to alternative energy sources and greenhouse gas reduction. The facility will ensure that the research undertaken will be internationally cutting edge and will hasten the adoption of technologies that will flow from the research, thereby reducing the effects of the impending energy crisis and related global pollution issues. The current capability for accurately measuring gas sorption in materials for storage and sequestration is limited in W.A. and the proposed facility will address this situation.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE0882246
Funder
Australian Research Council
Funding Amount
$750,000.00
Summary
Comprehensive Analysis Facility for Thin Films and Surfaces. The provision of infrastructure for the analysis of thin films will enhance Australia's capabilities in creating new materials and in creating new devices that meet needs in medicine, communications, the environment and security. As devices become smaller, sufaces and interfaces dominate their performance. The new facility will enable researchers to understand the structure and composition of the interior and interfaces of thin films a ....Comprehensive Analysis Facility for Thin Films and Surfaces. The provision of infrastructure for the analysis of thin films will enhance Australia's capabilities in creating new materials and in creating new devices that meet needs in medicine, communications, the environment and security. As devices become smaller, sufaces and interfaces dominate their performance. The new facility will enable researchers to understand the structure and composition of the interior and interfaces of thin films as well as mapping local variations in their key properties. Instruments with unique capabilities will measure elemental composition, crystallographic phase, defect and void distributions and spatially resolved stress, electrical, mechanical and magnetic properties.Read moreRead less
Development of novel ferroelectric magnetic materials for multi-functional applications. Ferroelectric magnets having simultaneous ferroeletricity and ferromagnetism is an area of emerging scientific interest. This project is to develop novel ferroelectric magnetic materials for multifunctional applications and falls into National Research Priority, Frontier Technologies for Building and Transforming Australian Industries. This project will provide trainings for postgraduate students and develop ....Development of novel ferroelectric magnetic materials for multi-functional applications. Ferroelectric magnets having simultaneous ferroeletricity and ferromagnetism is an area of emerging scientific interest. This project is to develop novel ferroelectric magnetic materials for multifunctional applications and falls into National Research Priority, Frontier Technologies for Building and Transforming Australian Industries. This project will provide trainings for postgraduate students and develop patentable science and technologies. The scope for use of the novel multifunctional materials will be enormous with great markets in the fields of magnetoelectronics, magnetic electromechanical industrial devices. It will benefit Australian manufacturing industry in the long term. Read moreRead less