Structure-Property Relationships of Polymers with Controlled Architecture. Mechanical properties of a polymer (e.g., how elastic it is and how it dissipates energy when compressed) govern how well it performs as an adhesive, or its behaviour when melted and shaped into a consumer item. This project aims to relate molecular architecture to mechanical properties, using new techniques which permit the creation of polymers wherein each architectural characteristic is separately controlled. This has ....Structure-Property Relationships of Polymers with Controlled Architecture. Mechanical properties of a polymer (e.g., how elastic it is and how it dissipates energy when compressed) govern how well it performs as an adhesive, or its behaviour when melted and shaped into a consumer item. This project aims to relate molecular architecture to mechanical properties, using new techniques which permit the creation of polymers wherein each architectural characteristic is separately controlled. This has the potential to develop fundamental understanding for structure-property relations for the type of branched polymers that are in common use in industry and for which adequate models do not currently exist.Read moreRead less
Novel Nano Particles for Advanced Automotive and Industrial Coatings. In conjunction with our industrial partner (DuPont Australia), this project will develop a new generation of automotive and industrial coatings. The technology developed from this project can integrate into the existing system. The new coatings will be environmentally friendly and will make a significant contribution to solve the emission issue of volatile organic compound (VOC) faced by the industry. The novel nano particles ....Novel Nano Particles for Advanced Automotive and Industrial Coatings. In conjunction with our industrial partner (DuPont Australia), this project will develop a new generation of automotive and industrial coatings. The technology developed from this project can integrate into the existing system. The new coatings will be environmentally friendly and will make a significant contribution to solve the emission issue of volatile organic compound (VOC) faced by the industry. The novel nano particles developed from this project will provide unique properties for automotive paint and can be commercialized at an acceptable price. The science involved in this project represents the cutting edge of world leading technology and will bring polymer science into a new field.Read moreRead less
Crystalline Mesoporous Metal Oxides for Solid Oxide Fuel Cell Electrodes. Our crystalline mesoporous electrodes will help realise the full potentials of solid oxide fuel cells. Such advanced fuel cell technology will drastically increase the power generation efficiency, and reduce CO2 emissions from present power plants, thereby transforming Australian energy industry and improving our environment. The design and development of novel crystalline mesoporous materials that find widespread industri ....Crystalline Mesoporous Metal Oxides for Solid Oxide Fuel Cell Electrodes. Our crystalline mesoporous electrodes will help realise the full potentials of solid oxide fuel cells. Such advanced fuel cell technology will drastically increase the power generation efficiency, and reduce CO2 emissions from present power plants, thereby transforming Australian energy industry and improving our environment. The design and development of novel crystalline mesoporous materials that find widespread industrial applications will advance Australia's knowledge and skill base, and help Australia's high-tech industries to stay competitive, including the development of new high-tech industries in Australia.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE0211003
Funder
Australian Research Council
Funding Amount
$125,000.00
Summary
A Facility for Probing Nanostructure in Polymers. The properties of a polymer are only partly determined by its molecular structure. It is now clear that the organization of molecular structure and phase morphology on a nano-scale has an equally important role in determining material behaviour. Increasingly this can be manipulated by judicious choice of formulation and processing variables. The polymer Nano-Structure Facility will bring together Australia's principal polymer experts in this a ....A Facility for Probing Nanostructure in Polymers. The properties of a polymer are only partly determined by its molecular structure. It is now clear that the organization of molecular structure and phase morphology on a nano-scale has an equally important role in determining material behaviour. Increasingly this can be manipulated by judicious choice of formulation and processing variables. The polymer Nano-Structure Facility will bring together Australia's principal polymer experts in this area of structure-property relations and provide them with shared access to the appropriate, modern analytical tools required to probe the nano-structure of such new materials with enhanced properties.Read moreRead less
THEORETICAL AND EXPERIMENTAL STUDIES OF BLOCK COPOLYMER MELTS AS NANO-MATERIALS. We shall theoretically study and predict the possible morphologies of a wide range of block copolymer architectures with a combination of simulations and accurate numerical theories. These block copolymer melts are of great technological importance because they can self-assemble into morphological patterns which are periodic on a nano-scale. Hence they are now being intensively investigated for uses in applications ....THEORETICAL AND EXPERIMENTAL STUDIES OF BLOCK COPOLYMER MELTS AS NANO-MATERIALS. We shall theoretically study and predict the possible morphologies of a wide range of block copolymer architectures with a combination of simulations and accurate numerical theories. These block copolymer melts are of great technological importance because they can self-assemble into morphological patterns which are periodic on a nano-scale. Hence they are now being intensively investigated for uses in applications as diverse as lithographic templates for electronic and optical devices, nano-porous membranes and photonic band gap materials. We shall verify our theoretical predictions by carrying out experiments on the various molecular architectures that we have studied theoretically.Read moreRead less
Bioactive Polymers for Wound Healing Applications. VitroGroR is a growth factor complex which enhances cell growth and migration, and hence has great potential for treating wounds. Tissue Therapies, which holds the rights to commercialization of VitroGroR, is seeking to develop methods of delivering VitroGroR in its active form to the wound environment. Two solutions to this problem will be developed in this project; a bioactive bandage containing a novel combination of microspheres and a hydrog ....Bioactive Polymers for Wound Healing Applications. VitroGroR is a growth factor complex which enhances cell growth and migration, and hence has great potential for treating wounds. Tissue Therapies, which holds the rights to commercialization of VitroGroR, is seeking to develop methods of delivering VitroGroR in its active form to the wound environment. Two solutions to this problem will be developed in this project; a bioactive bandage containing a novel combination of microspheres and a hydrogel matrix, and secondly an in-situ polymerisable matrix for treatment of deep wounds. The growth factor complex will be protected from aggressive proteases through encapsulation within microspheres, and the use of MMP-inhibiting comonomers.Read moreRead less
Special Research Initiatives - Grant ID: SR0354521
Funder
Australian Research Council
Funding Amount
$10,000.00
Summary
Network for Advanced Materials for Engineering Applications. Advances in modern technology and a competitive manufacturing industry depend critically on new and improved materials. The pace of change is rapid, and many countries are taking steps to improve and coordinate developments. Australia has a very successful record of materials research and innovation and is developing a substantial infrastructure in the area. However, the materials research community is scattered, and research effect ....Network for Advanced Materials for Engineering Applications. Advances in modern technology and a competitive manufacturing industry depend critically on new and improved materials. The pace of change is rapid, and many countries are taking steps to improve and coordinate developments. Australia has a very successful record of materials research and innovation and is developing a substantial infrastructure in the area. However, the materials research community is scattered, and research effectiveness is sometimes lessened by a lack of critical mass. This network will bring together university, government and industry researchers, and promote collaborative research, access to each other's facilities, staff and student exchanges, improved access to existing infrastructure and coordinated planning for new acquisitions.Read moreRead less
Novel Waterborne Multifunctional Sealer for Asphalt Pavement. One of the long-term challenges and most serious problems faced by the asphalt surfacing and road construction industry is the rapid deterioration of asphaltic surfaces to the extent that they become unfit/unsafe for use in short time. The length of the Australian local government road system is approximately 810,000 kilometres and currently approximately $2,460 million/year is spent on road maintenance; the replacement value of ....Novel Waterborne Multifunctional Sealer for Asphalt Pavement. One of the long-term challenges and most serious problems faced by the asphalt surfacing and road construction industry is the rapid deterioration of asphaltic surfaces to the extent that they become unfit/unsafe for use in short time. The length of the Australian local government road system is approximately 810,000 kilometres and currently approximately $2,460 million/year is spent on road maintenance; the replacement value of the road asset exceeds $106,000 million. Thus providing satisfactory tough protective shield on asphalt pavements that locks out destructive elements and provide long-term protection is of enormous economic importance and national/community benefit.Read moreRead less
Novel Fuel-Cell Structures based on Electroactive Polymers. The Discovery Project will tackle some of the challenging issues regarding the conversion of our society into a post-petroleum era through: Development and understanding of a new class of organic catalysts for efficient low temperature fuel-cells; Developing cheap and effective, ultra-thin, ion-conducting membranes for fuel-cells based on new plasma-polymers; and Integrating the components into fuel-cells suitable for stationary, portab ....Novel Fuel-Cell Structures based on Electroactive Polymers. The Discovery Project will tackle some of the challenging issues regarding the conversion of our society into a post-petroleum era through: Development and understanding of a new class of organic catalysts for efficient low temperature fuel-cells; Developing cheap and effective, ultra-thin, ion-conducting membranes for fuel-cells based on new plasma-polymers; and Integrating the components into fuel-cells suitable for stationary, portable and automotive applications. These outcomes will contribute to national research priorities: Frontier Technologies for building and transforming Australian Industries, and An Environmentally Sustainable Australia.
Read moreRead less
Photoactive Semiconducting Biopolymers. The basic aims of this project are to elucidate, manipulate, and utilise the unique chemical and physical properties of a class of biopolymers called the melanins. These materials are the only known solid state semiconducting biopolymers, and are non-toxic, biocompatible, and biodegradable. Their use as active components in biomimetic soft electonic, optoelectronic or photovoltaic devices, has not hitherto been demonstrated. It is anticipated that the k ....Photoactive Semiconducting Biopolymers. The basic aims of this project are to elucidate, manipulate, and utilise the unique chemical and physical properties of a class of biopolymers called the melanins. These materials are the only known solid state semiconducting biopolymers, and are non-toxic, biocompatible, and biodegradable. Their use as active components in biomimetic soft electonic, optoelectronic or photovoltaic devices, has not hitherto been demonstrated. It is anticipated that the key outcomes from the project will be a demonstration of biopolymer-based photoelectrochemical and solid-state p-i-n solar cells, and an improved understanding of the physics and chemistry of these important biological macromolecules.Read moreRead less