Nanoporous siloxane membranes for ultrasound mediated ophthalmic drug delivery. This project will develop tailored polymers for use in a novel non-invasive ocular drug delivery device which treats vision threatening conditions such as age-related macular degeneration (AMD). The outcomes of this project will enable an entirely new ocular drug delivery technology, thereby delivering significant benefit to ophthalmic healthcare.
Discovery Early Career Researcher Award - Grant ID: DE170101249
Funder
Australian Research Council
Funding Amount
$360,000.00
Summary
Polymers with controllable networks. This project aims to understand the mechanism and molecular level factors controlling the network flexibility, reversibility and rapid curing of cross-linked polymer structures. A highly formable, rapidly curing polymer network could improve manufacture of composites where a fibre material is embedded in a polymer matrix. The key challenges for these materials are achieving high rates of production (one part per minute) and end of life recyclability. Expected ....Polymers with controllable networks. This project aims to understand the mechanism and molecular level factors controlling the network flexibility, reversibility and rapid curing of cross-linked polymer structures. A highly formable, rapidly curing polymer network could improve manufacture of composites where a fibre material is embedded in a polymer matrix. The key challenges for these materials are achieving high rates of production (one part per minute) and end of life recyclability. Expected outcomes are polymer materials with tailorable properties and the uptake of lightweight composite materials into mass transport systems.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE180101454
Funder
Australian Research Council
Funding Amount
$359,446.00
Summary
High performance lead-free piezoelectrics based on polar nanoregions. This project aims to enhance the electro-mechanical couplings of lead free piezoelectrics via introducing polar nanoregions for medical transducers applications. This is expected to impact on the design and development of high-performance lead free piezoelectrics, and have environmental benefits through replacing lead based counterparts.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE170100235
Funder
Australian Research Council
Funding Amount
$388,000.00
Summary
Spectroscopy and imaging platform for photoactive materials. This project aims to establish a comprehensive analytic tool-box to characterise solution-processable materials for thin-film solar cells based on materials such as perovskites. These materials have light harvesting properties with absorption edges beyond 800 nm. This project will focus on time-resolved transient absorption and microwave conductivity phenomena and on lock-in thermographic imaging capabilities. This will accelerate mate ....Spectroscopy and imaging platform for photoactive materials. This project aims to establish a comprehensive analytic tool-box to characterise solution-processable materials for thin-film solar cells based on materials such as perovskites. These materials have light harvesting properties with absorption edges beyond 800 nm. This project will focus on time-resolved transient absorption and microwave conductivity phenomena and on lock-in thermographic imaging capabilities. This will accelerate materials and technological development in this research field. This project is expected to help the local and global energy sector transition to sustainable energy, provide a competitive edge for commercialisations of solar technologies in Australia, and benefit the economy, environment and national security.Read moreRead less
Two-dimensional plasmonic heterogeneous nanostructures for photocatalysis. This project aims to design and explore two-dimensional heterogeneous photocatalysts that can convert solar energy into usable chemical energy. This project will investigate the correlation between surface plasmonic resonance and photocatalytic activities on the atomic level. Heterogeneous engineering and in-situ investigation of atomic-level photocatalytic dynamics is expected to yield several new full-solar-spectrum pho ....Two-dimensional plasmonic heterogeneous nanostructures for photocatalysis. This project aims to design and explore two-dimensional heterogeneous photocatalysts that can convert solar energy into usable chemical energy. This project will investigate the correlation between surface plasmonic resonance and photocatalytic activities on the atomic level. Heterogeneous engineering and in-situ investigation of atomic-level photocatalytic dynamics is expected to yield several new full-solar-spectrum photocatalysts. The project is expected to contribute to the understanding of the processes and mechanisms underlying photocatalysis, and lead to useable, stable and durable photocatalytics. The outcomes will enable efficient, cost-effective and reliable production of clean energy in a low-emission way.Read moreRead less
Two-dimensional plasmonic heterogeneous nanostructures for photocatalysis. This project aims to design and explore two-dimensional heterogeneous photocatalysts that can convert solar energy into usable chemical energy. This project will investigate the correlation between surface plasmonic resonance and photocatalytic activities on the atomic level. Heterogeneous engineering and in-situ investigation of atomic-level photocatalytic dynamics is expected to yield several new full-solar-spectrum pho ....Two-dimensional plasmonic heterogeneous nanostructures for photocatalysis. This project aims to design and explore two-dimensional heterogeneous photocatalysts that can convert solar energy into usable chemical energy. This project will investigate the correlation between surface plasmonic resonance and photocatalytic activities on the atomic level. Heterogeneous engineering and in-situ investigation of atomic-level photocatalytic dynamics is expected to yield several new full-solar-spectrum photocatalysts. The project is expected to contribute to the understanding of the processes and mechanisms underlying photocatalysis, and lead to useable, stable and durable photocatalytics. The outcomes will enable efficient, cost-effective and reliable production of clean energy in a low-emission way.Read moreRead less
Bio-inspired electro catalysts for gas reduction reactions: towards electrochemical ammonia production under ambient conditions. This project will develop solutions to replace the current energy inefficient method for ammonia production, which are a significant contribution to Greenhouse Gas emissions. A more energy efficient system will be developed from a new class of composite gas-reduction catalysts integrated into functional electrochemical cells.
Nanostructured non-precious metal and metal-free catalysts for sustainable clean energy generation. The innovative technologies for substitution of precious metal catalysts will be developed and used in fuel cells for clean energy generation in a highly efficient and sustainable form. This effort will lead to the reduction in carbon dioxide emissions and the alleviation of environmental and climate change problems.
Linkage Infrastructure, Equipment And Facilities - Grant ID: Le170100235
Funder
Australian Research Council
Summary
Spectroscopy and imaging platform for photoactive materials. This project aims to establish a comprehensive analytic tool-box to characterise solution-processable materials for thin-film solar cells based on materials such as perovskites. These materials have light harvesting properties with absorption edges beyond 800 nm. This project will focus on time-resolved transient absorption and microwave conductivity phenomena and on lock-in thermographic imaging capabilities. This will accelerate mate ....Spectroscopy and imaging platform for photoactive materials. This project aims to establish a comprehensive analytic tool-box to characterise solution-processable materials for thin-film solar cells based on materials such as perovskites. These materials have light harvesting properties with absorption edges beyond 800 nm. This project will focus on time-resolved transient absorption and microwave conductivity phenomena and on lock-in thermographic imaging capabilities. This will accelerate materials and technological development in this research field. This project is expected to help the local and global energy sector transition to sustainable energy, provide a competitive edge for commercialisations of solar technologies in Australia, and benefit the economy, environment and national security.Read moreRead less
Exploring piezoelectricity of two-dimensional nanocrystals and nanodevices. This project aims to study piezoelectricity in two-dimensional (2D) nanocrystals and nano-devices. This project expects to result in the formulation of new 2D piezoelectric, ferroelectric and multiferroic theory, syntheses of 2D crystals and exploration of their functionalities, which are directly implemented in innovative electronic and photonic components. This will contribute to the advancement of both new 2D multifun ....Exploring piezoelectricity of two-dimensional nanocrystals and nanodevices. This project aims to study piezoelectricity in two-dimensional (2D) nanocrystals and nano-devices. This project expects to result in the formulation of new 2D piezoelectric, ferroelectric and multiferroic theory, syntheses of 2D crystals and exploration of their functionalities, which are directly implemented in innovative electronic and photonic components. This will contribute to the advancement of both new 2D multifunctional materials and new nanodevice structures which may open up unprecedented opportunities for both scientific and technological endeavoursRead moreRead less