Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100188
Funder
Australian Research Council
Funding Amount
$1,000,000.00
Summary
Epitaxial growth facility for advanced materials. An advanced materials fabrication facility accessible to all Australian researchers will be established. This will allow crystal growth at the atomic level for novel materials with applications including fundamental physics, nanocomposites, energy storage and conversion systems, and solar cells.
Defect generation in hetero-epitaxy on lattice mismatched substrates. High quality lattice mismatched semiconductor heterostructures are core enabling technologies for next generation electronic and optoelectronic devices with new functions and features such as monolithic integration, lower production costs, larger wafer size, and better system robustness. This project will generate new science on defect generation in lattice mismatched hetero-epitaxy with the aim of developing novel strategies ....Defect generation in hetero-epitaxy on lattice mismatched substrates. High quality lattice mismatched semiconductor heterostructures are core enabling technologies for next generation electronic and optoelectronic devices with new functions and features such as monolithic integration, lower production costs, larger wafer size, and better system robustness. This project will generate new science on defect generation in lattice mismatched hetero-epitaxy with the aim of developing novel strategies for their minimisation. The direct outcome will be higher quality HgCdTe materials on lattice mismatched Si or III-V substrates with defect density low enough for fabricating high performance mid-wave and long-wave infrared arrays with features of lower cost, larger array format size, and higher operating temperature.Read moreRead less
Towards energy-efficient lighting based on light-emitting diodes: the role of silicon carbide grown on Si Wafers. This project will investigate a potential solution to the problems of cost and quality of light-emitting diodes for solid-state lighting. The expected outcome is knowledge to underpin future development of solid-state lighting that is suitable for a wide replacement of the much less efficient and effective incandescent bulbs and fluorescent tubes.
High Performance Monolithic Perovskite Photocapacitors. Monolithic perovskite photocapacitor (MPPC) consisted of integrated energy harvesting perovskite solar cell and energy storage supercapacitor through an internally shared electrode can deliver stable electricity by harnessing solar energy. The performance of MPPC is dependent of properties of the shared electrode materials. This project aims to synthesis carbon materials with tailored surface, electrical and structure properties that are re ....High Performance Monolithic Perovskite Photocapacitors. Monolithic perovskite photocapacitor (MPPC) consisted of integrated energy harvesting perovskite solar cell and energy storage supercapacitor through an internally shared electrode can deliver stable electricity by harnessing solar energy. The performance of MPPC is dependent of properties of the shared electrode materials. This project aims to synthesis carbon materials with tailored surface, electrical and structure properties that are required to make a highly functioning shared electrode in MPPC. The goal is to fabricate stable, high performance MPPC. Successful achievement of the outcomes will enable cost-effective, reliable, solar electricity, placing Australia at the forefront of exploiting photovoltaics technologies.Read moreRead less
III-V semiconductor nanowire solar cells without p-n junctions. This project proposes a new class of nanowire solar cells that do not rely on conventional electrical (p-n) junction for photo-generated charge carrier separation. Instead the band structure of the semiconductors is engineered to form a misalignment which leads to the spatial separation of carriers. This approach is expected to fundamentally change the design of solar cells, eliminating the technologically challenging need for formi ....III-V semiconductor nanowire solar cells without p-n junctions. This project proposes a new class of nanowire solar cells that do not rely on conventional electrical (p-n) junction for photo-generated charge carrier separation. Instead the band structure of the semiconductors is engineered to form a misalignment which leads to the spatial separation of carriers. This approach is expected to fundamentally change the design of solar cells, eliminating the technologically challenging need for forming good electrical junctions, while retaining all advantages inherent to III-V semiconductor nanowire solar cells. More importantly, the device concept proposed is expected to have implications for a wider class of solar cells based on exotic/novel materials or nanostructures where achieving both n- and p-doping may be challenging.Read moreRead less
Defect control for high-performance green kesterites energy materials. This project will tackle the fundamental challenge of defect control of the quaternary compound kesterite, revolutionizing the way we can understand the hidden defect-evolution process and design accordingly effective defect-control approaches. This will be realized by a systematic approach integrating multiscale materials characterization, process and materials modeling, and linking microscopic local chemical potential and m ....Defect control for high-performance green kesterites energy materials. This project will tackle the fundamental challenge of defect control of the quaternary compound kesterite, revolutionizing the way we can understand the hidden defect-evolution process and design accordingly effective defect-control approaches. This will be realized by a systematic approach integrating multiscale materials characterization, process and materials modeling, and linking microscopic local chemical potential and macroscopic processing conditions, and associated compound properties and device performance to control defects evolution. Successfully achieved, this project will realize full potential of kesterite in photovoltaic and photoelectrochemical applications, and leading to new discoveries in other compound energy materials.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100200
Funder
Australian Research Council
Funding Amount
$200,000.00
Summary
Advanced facility for magneto-transport characterisation of semiconductor nanostructures. This facility combines a 16 Tesla superconducting magnet with temperature variability from 1.5 degrees above absolute zero to 500 degrees with advanced mobility spectrum analysis algorithms. It will enable improved separation of previously indistinguishable multiple carrier effects in advanced semiconductor systems. This improved separation will allow an improved understanding of multiple carrier effects wh ....Advanced facility for magneto-transport characterisation of semiconductor nanostructures. This facility combines a 16 Tesla superconducting magnet with temperature variability from 1.5 degrees above absolute zero to 500 degrees with advanced mobility spectrum analysis algorithms. It will enable improved separation of previously indistinguishable multiple carrier effects in advanced semiconductor systems. This improved separation will allow an improved understanding of multiple carrier effects which will be essential before the development of frontier semiconductor technologies becomes possible.Read moreRead less
Defect engineering in molecular beam epitaxy-grown mercury cadmium telluride. This project aims to develop high quality mercury cadmium telluride (HgCdTe) materials with lower defect density and lower background doping levels. This will enable future, high-performance, lower-cost infrared sensors with the unique features of higher yield, larger array size and higher operating temperature. The project will generate new science and technologies on defect engineering in the epitaxial growth of sem ....Defect engineering in molecular beam epitaxy-grown mercury cadmium telluride. This project aims to develop high quality mercury cadmium telluride (HgCdTe) materials with lower defect density and lower background doping levels. This will enable future, high-performance, lower-cost infrared sensors with the unique features of higher yield, larger array size and higher operating temperature. The project will generate new science and technologies on defect engineering in the epitaxial growth of semiconducting HgCdTe on cadmium zinc telluride (CdZnTe) substrates. This will contribute to the development of core Australian industry sectors such as defence, environmental monitoring, medical imaging, earth remote sensing, mining, and oil and gas.Read moreRead less
Efficient photovoltaic-electrochemical water splitting for clean hydrogen. This project aims to develop a novel, low cost and high performance monolithic photovoltaic-electrochemical (PV-EC) device for clean hydrogen production. This device tailors and integrates low cost and high performance thin film and tandem photovoltaics for water splitting with the aim of achieving high solar to hydrogen conversion efficiency towards 20%. Earth abundant and stable catalysts will be developed in this proje ....Efficient photovoltaic-electrochemical water splitting for clean hydrogen. This project aims to develop a novel, low cost and high performance monolithic photovoltaic-electrochemical (PV-EC) device for clean hydrogen production. This device tailors and integrates low cost and high performance thin film and tandem photovoltaics for water splitting with the aim of achieving high solar to hydrogen conversion efficiency towards 20%. Earth abundant and stable catalysts will be developed in this project to replace noble based catalysts, as well as novel architectures for electrical contacting, feed-through and catalyst integration in PV-EC devices. These innovations offer high performance and the potential for device costs 2 to 3 orders of magnitude lower than recent world record photoelectrochemical devices. Read moreRead less
Cadmium telluride/Germanium (CdTe/Ge) tandem-junction solar cells for efficiency enhancement in thin-film photovoltaics. The purpose of this project is to improve the efficiency of large-area, thin-film CdTe solar cells by using them in a tandem arrangement with thin-film Ge cells. An increase of 25 per cent in efficiency appears possible, which would greatly improve the prospects for cost-competitive photovoltaic power generation.