Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100188
Funder
Australian Research Council
Funding Amount
$1,000,000.00
Summary
Epitaxial growth facility for advanced materials. An advanced materials fabrication facility accessible to all Australian researchers will be established. This will allow crystal growth at the atomic level for novel materials with applications including fundamental physics, nanocomposites, energy storage and conversion systems, and solar cells.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100004
Funder
Australian Research Council
Funding Amount
$470,000.00
Summary
Thin film processing cluster: precise synthesis and nano-patterning of functional coatings. This facility will allow Australian researchers to create advanced functional materials with unprecedented control over material configurations and near atomic scale precision in dimensions. This will enable significant advances in high speed photonics and electronics, health and environment monitoring, and micro-energy sources.
Cost-efficient 2D heterostructures for solar overall water splitting. This project aims to develop novel processes to enable water splitting to generate hydrogen and oxygen under sunlight using cost-efficient 2D van der Waals heterostructures. Enhanced optical absorption and reduced charge transfer distance across the interface are expected to improve the photocatalytic activity. Experimental design and theoretical simulations will be combined to modulate the materials and achieve optimum photoc ....Cost-efficient 2D heterostructures for solar overall water splitting. This project aims to develop novel processes to enable water splitting to generate hydrogen and oxygen under sunlight using cost-efficient 2D van der Waals heterostructures. Enhanced optical absorption and reduced charge transfer distance across the interface are expected to improve the photocatalytic activity. Experimental design and theoretical simulations will be combined to modulate the materials and achieve optimum photocatalytic performances. Expected outcomes of this project include expanded chemistry knowledge and techniques in materials design and synthesis, photophysics and photocatalysis mechanism and solar energy conversion. This will provide significant benefits to clean energy and environmental protections.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100127
Funder
Australian Research Council
Funding Amount
$250,000.00
Summary
Hall effect system for detailed electrical characterisation in semiconductors. Semiconductor characterisation is crucial for research and development in optimum growth and fabrication procedures. This Hall effect measurement system is an essential carrier characterisation technique for semiconductors with potential applications in microelectronics, optoelectronics and photovoltaics.
III-V semiconductor nanowire solar cells without p-n junctions. This project proposes a new class of nanowire solar cells that do not rely on conventional electrical (p-n) junction for photo-generated charge carrier separation. Instead the band structure of the semiconductors is engineered to form a misalignment which leads to the spatial separation of carriers. This approach is expected to fundamentally change the design of solar cells, eliminating the technologically challenging need for formi ....III-V semiconductor nanowire solar cells without p-n junctions. This project proposes a new class of nanowire solar cells that do not rely on conventional electrical (p-n) junction for photo-generated charge carrier separation. Instead the band structure of the semiconductors is engineered to form a misalignment which leads to the spatial separation of carriers. This approach is expected to fundamentally change the design of solar cells, eliminating the technologically challenging need for forming good electrical junctions, while retaining all advantages inherent to III-V semiconductor nanowire solar cells. More importantly, the device concept proposed is expected to have implications for a wider class of solar cells based on exotic/novel materials or nanostructures where achieving both n- and p-doping may be challenging.Read moreRead less
van der Waals epitaxy for advanced and flexible optoelectronics. This project aims to investigate the growth of compound semiconductors directly on two-dimensional material templates, via the so-called van der Waals epitaxy. Two-dimensional materials combined with compound semiconductors as optoelectronic materials can have many uses. This project expects to design flexible solar cells, which could be integrated with fabrics or building products, and lasers that need small drive currents. It wil ....van der Waals epitaxy for advanced and flexible optoelectronics. This project aims to investigate the growth of compound semiconductors directly on two-dimensional material templates, via the so-called van der Waals epitaxy. Two-dimensional materials combined with compound semiconductors as optoelectronic materials can have many uses. This project expects to design flexible solar cells, which could be integrated with fabrics or building products, and lasers that need small drive currents. It will use the Anderson localisation effect, a photon management concept, to control the interaction between photons and material and improve device efficiencies.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE220101190
Funder
Australian Research Council
Funding Amount
$418,292.00
Summary
Designing low-toxicity and stable perovskites for solar energy conversion. Efficient solar energy conversion systems can significantly promote sustainable and low carbon-emission economy. This project aims to rationally design low-toxic and stable metal halide perovskites for efficient solar hydrogen conversion. The key concept is to design stable lead-free metal halide perovskite semiconductors with superior photophysical properties for solar-driven valuable chemical production. Expected outcom ....Designing low-toxicity and stable perovskites for solar energy conversion. Efficient solar energy conversion systems can significantly promote sustainable and low carbon-emission economy. This project aims to rationally design low-toxic and stable metal halide perovskites for efficient solar hydrogen conversion. The key concept is to design stable lead-free metal halide perovskite semiconductors with superior photophysical properties for solar-driven valuable chemical production. Expected outcomes include new generation advanced materials and proof-of-concept technologies for efficient solar hydrogen generation. The successful completion of this project will benefit Australia by positioning the nation at the frontier of advanced functional materials and renewable energy supply technologies.Read moreRead less
Nanostructuring and nanocharacterisation of organic semiconductor devices. This research project will utilise new approaches to pattern organic solar cells on the nanoscale to realise improved efficiencies and improved understanding of device operation. It will also develop soft x-ray techniques to probe the nanostructure of organic semiconductor films with increased chemical and interfacial specificity.
Efficient photovoltaic-electrochemical water splitting for clean hydrogen. This project aims to develop a novel, low cost and high performance monolithic photovoltaic-electrochemical (PV-EC) device for clean hydrogen production. This device tailors and integrates low cost and high performance thin film and tandem photovoltaics for water splitting with the aim of achieving high solar to hydrogen conversion efficiency towards 20%. Earth abundant and stable catalysts will be developed in this proje ....Efficient photovoltaic-electrochemical water splitting for clean hydrogen. This project aims to develop a novel, low cost and high performance monolithic photovoltaic-electrochemical (PV-EC) device for clean hydrogen production. This device tailors and integrates low cost and high performance thin film and tandem photovoltaics for water splitting with the aim of achieving high solar to hydrogen conversion efficiency towards 20%. Earth abundant and stable catalysts will be developed in this project to replace noble based catalysts, as well as novel architectures for electrical contacting, feed-through and catalyst integration in PV-EC devices. These innovations offer high performance and the potential for device costs 2 to 3 orders of magnitude lower than recent world record photoelectrochemical devices. Read moreRead less
Bio-inspired conducting peptide nanowires for bioelectronic applications. Some bacteria possess a natural conductive tail constructed from proteins (called a nanowire) that has metal-like conductivity. The electrical signals in these nanowires are carried through aromatic groups in the peptides and/or attached cytochromes. This project addresses the design and assembly of conducting peptide-based fibrils inspired by these nanowires. It has already been shown that peptides can, by design, self-as ....Bio-inspired conducting peptide nanowires for bioelectronic applications. Some bacteria possess a natural conductive tail constructed from proteins (called a nanowire) that has metal-like conductivity. The electrical signals in these nanowires are carried through aromatic groups in the peptides and/or attached cytochromes. This project addresses the design and assembly of conducting peptide-based fibrils inspired by these nanowires. It has already been shown that peptides can, by design, self-assemble into long thermostable fibrils that support cell growth and development. The project’s goal is now to create cost-effective, non-toxic, conducting peptide fibrils that can be used in water or physiological environments for bioelectronics applications.Read moreRead less