Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100099
Funder
Australian Research Council
Funding Amount
$290,000.00
Summary
A complete near-field scanning optical microscope for advanced characterisation of novel and functional materials. This near-field optical scanning microscope will be unique in Australia and will substantially enhance national research capabilities in functional materials, nanotechnology, biotechnology and chemistry. It will create a platform to advance Australian research to new levels in pharmaceuticals, nanomaterials and energy storage materials.
Materials Engineering Solutions for Tomorrow's Water Resources. This proposal concerns the development of advanced technologies informed by knowledge management systems to ensure the continued provision of high-quality drinking water to Australian. This is particularly important as we see the impacts from climate change and extreme weather variability with catastrophic consequences such as recently seen in Victoria and in Queensland on water catchments and water quality and supply. The challenge ....Materials Engineering Solutions for Tomorrow's Water Resources. This proposal concerns the development of advanced technologies informed by knowledge management systems to ensure the continued provision of high-quality drinking water to Australian. This is particularly important as we see the impacts from climate change and extreme weather variability with catastrophic consequences such as recently seen in Victoria and in Queensland on water catchments and water quality and supply. The challenges of adequate water resourcing, both in quantity and quality, for Australians who wish to lead healthy and productive lives are serious and require collaboration between industry, government and research providers such as is proposed here. Read moreRead less
Development of novel safe lithium metal-free sulphur batteries. Development of novel safe lithium metal-free sulphur batteries. This project aims to develop a lithium-metal-free sulphur battery system, and technology to commercialise this battery technology. Expected outcomes include an electrochemical system consisting of a selected promising lithium sulphide cathode, an alloying type anode and a liquid-based electrolyte, and large lithium-ion sulphur batteries with selected advanced electrode ....Development of novel safe lithium metal-free sulphur batteries. Development of novel safe lithium metal-free sulphur batteries. This project aims to develop a lithium-metal-free sulphur battery system, and technology to commercialise this battery technology. Expected outcomes include an electrochemical system consisting of a selected promising lithium sulphide cathode, an alloying type anode and a liquid-based electrolyte, and large lithium-ion sulphur batteries with selected advanced electrode materials and electrolytes. Anticipated outcomes are the improved safety of typical lithium-sulphur batteries; that Australia will be internationally competitive in the area of energy storage; and increased overseas demand for Australian raw materials for manufacturing lithium-ion batteries.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100069
Funder
Australian Research Council
Funding Amount
$200,000.00
Summary
A complete thermo-electric characterisation facility for exploration of novel materials and devices at high temperatures. This high temperature materials’ characterisation facility will be the most advanced measurement setup of its kind in Australia. The unique features of the equipment and its high versatility will substantially enhance national research capabilities in functional materials, metal engineering, manufacturing engineering, chemistry, and physics.
Sodium-ion batteries for renewable energy storage. This project aims to develop sodium-ion batteries for renewable energy storage and conversion. Electrical energy storage is important for integrating renewable energy sources, improving grid reliability, and intelligently managing peak demand. Sodium-ion batteries are promising for large scale energy storage applications because of low cost and natural abundance of sodium. This project will integrate materials architecture design, synthesise cat ....Sodium-ion batteries for renewable energy storage. This project aims to develop sodium-ion batteries for renewable energy storage and conversion. Electrical energy storage is important for integrating renewable energy sources, improving grid reliability, and intelligently managing peak demand. Sodium-ion batteries are promising for large scale energy storage applications because of low cost and natural abundance of sodium. This project will integrate materials architecture design, synthesise cathode materials, model and test electrochemistry, and make prototype batteries. This project is expected to help the Government meet its renewable energy target, improve utilities’ power quality and reliability, create industry opportunities, and maintain Australia’s high standing in energy research.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100126
Funder
Australian Research Council
Funding Amount
$150,000.00
Summary
An integrated kinetic measurement system enabling efficient solar energy conversion. This measurement facility will underpin advances in the fundamental understanding of new semiconducting materials for high efficiency light-driven energy conversion systems. The outcomes of the research at the facility will lead to significant economic and environmental benefits for many industries, such as low cost solar cells and water purifications.
Harnessing properties of liquid metals for future devices. This project aims to hybridise low toxicity liquid metal alloys of gallium with surface confined functional micro/nano materials and explore fundamental new fluidic and physical-chemistry phenomena. Liquid metals are an under-used group of materials, but their combination of flexibility, bestowed by their room temperature fluidity, and metallic properties means they demonstrate startling behaviour. The expected outcomes are new devices a ....Harnessing properties of liquid metals for future devices. This project aims to hybridise low toxicity liquid metal alloys of gallium with surface confined functional micro/nano materials and explore fundamental new fluidic and physical-chemistry phenomena. Liquid metals are an under-used group of materials, but their combination of flexibility, bestowed by their room temperature fluidity, and metallic properties means they demonstrate startling behaviour. The expected outcomes are new devices and systems such as reconfigurable and highly efficient actuators/generators, catalysts, sensors, and electronic and optical components.Read moreRead less
Development of a solid nitrogen cooled magnesium diboride (MgB2) magnet for persistent-mode operation. Soaring price for liquid helium has increased demand for cryogen-free superconducting magnets more than ever. If magnetic resonance imaging magnets, which represent over 50 per cent of the world superconducting markets, could be operated without liquid helium, magnetic resonance imaging would be much more affordable and enable reduced health care costs.
Lithium-air battery: a green energy source for the sustainable future. Electrification of vehicles and the implementation of smart electric grids can dramatically reduce greenhouse gas emissions and realise sustainable development. Lithium-air batteries have the highest energy density among all battery systems and are therefore a promising power source for electric vehicles and stationary energy storage.
Atomic scale information for the design of nanomaterials. This project aims to develop a new tool to measure the 3-D distribution of atoms within nanoparticles. For the rational design of nanoparticles, it is necessary to compare the atomic scale structure to the resulting performance. But this information is hard to access. This projects aims to develop new methods so that atom probe microscopy can be applied to experimentally measure the precise 3-D location and identity of the individual atom ....Atomic scale information for the design of nanomaterials. This project aims to develop a new tool to measure the 3-D distribution of atoms within nanoparticles. For the rational design of nanoparticles, it is necessary to compare the atomic scale structure to the resulting performance. But this information is hard to access. This projects aims to develop new methods so that atom probe microscopy can be applied to experimentally measure the precise 3-D location and identity of the individual atoms within nanoparticles, and apply them in the development of alloy catalyst nanoparticles that could make the sustainable production of liquid fuels from biomass commercially viable. These new tools would be useful across the wide range of engineering applications for which nanomaterials are currently being developed.Read moreRead less