Discovery Early Career Researcher Award - Grant ID: DE190100311
Funder
Australian Research Council
Funding Amount
$360,000.00
Summary
Multidirectional stretchable and wearable tactile sensors. This project aims to establish a new platform for multidirectional wearable tactile sensors with high sensitivity and stretchability based on rational material designs and structural engineering. Wearable tactile sensors with multidirectional force-sensing capabilities are of great importance in robotics, prosthetics, and rehabilitation devices. This novel form of tactile sensing will be developed through fundamental research into the wo ....Multidirectional stretchable and wearable tactile sensors. This project aims to establish a new platform for multidirectional wearable tactile sensors with high sensitivity and stretchability based on rational material designs and structural engineering. Wearable tactile sensors with multidirectional force-sensing capabilities are of great importance in robotics, prosthetics, and rehabilitation devices. This novel form of tactile sensing will be developed through fundamental research into the working mechanism of directional sensors to enable detection of different force intensities. Combined with new device fabrication techniques, and innovative material structural engineering, the expected outcome is a new multidirectional tactile sensor system with high sensitivity and stretchability.Read moreRead less
Developing high performance nanocomposite coatings for domestic appliances. Insufficient robustness and durability of the polymeric coatings on precoated metal sheets has resulted in unacceptably high product defects and reject rates. This project aims to develop novel and high performance nanocomposite multilayer coatings through the systematic optimisation of epoxy and polyester/ graphene and nanoclay systems. These complex coatings are expected to have considerably improved toughness, hardnes ....Developing high performance nanocomposite coatings for domestic appliances. Insufficient robustness and durability of the polymeric coatings on precoated metal sheets has resulted in unacceptably high product defects and reject rates. This project aims to develop novel and high performance nanocomposite multilayer coatings through the systematic optimisation of epoxy and polyester/ graphene and nanoclay systems. These complex coatings are expected to have considerably improved toughness, hardness and interfacial adhesion, thus enhancing formability and wear resistance of precoated metal sheets. Successful outcomes from this study will not only solve a long-standing problem in the manufacturing of precoated metals, but generate breakthrough technologies for next-generation nanocomposite coatings. Read moreRead less
Ultrahigh strength maraging titanium alloys for additive manufacturing . This project aims to pioneer an unprecedented class of ultrahigh-strength titanium alloys for 3D printing by capitalising on both the alloy design theory of ultrahigh-strength steels and the unique capability of laser-based 3D printing. The planned research expects to significantly advance the knowledge base of advanced metallic materials and metal 3D printing via atomistic level characterisation and systematic mechanical p ....Ultrahigh strength maraging titanium alloys for additive manufacturing . This project aims to pioneer an unprecedented class of ultrahigh-strength titanium alloys for 3D printing by capitalising on both the alloy design theory of ultrahigh-strength steels and the unique capability of laser-based 3D printing. The planned research expects to significantly advance the knowledge base of advanced metallic materials and metal 3D printing via atomistic level characterisation and systematic mechanical property evaluation in relation to specifically tailored 3D printing conditions. Expected outcomes include a group of ultrahigh-strength novel titanium alloys for 3D printing and a new alloy design theory. This should provide significant benefits to the manufacturing industry to support the national economy and security.Read moreRead less
Developing high performance nanocomposite coatings for domestic appliances. Insufficient robustness and durability of the polymeric coatings on precoated metal sheets has resulted in unacceptably high product defects and reject rates. This project aims to develop novel and high performance nanocomposite multilayer coatings through the systematic optimisation of epoxy and polyester/ graphene and nanoclay systems. These complex coatings are expected to have considerably improved toughness, hardnes ....Developing high performance nanocomposite coatings for domestic appliances. Insufficient robustness and durability of the polymeric coatings on precoated metal sheets has resulted in unacceptably high product defects and reject rates. This project aims to develop novel and high performance nanocomposite multilayer coatings through the systematic optimisation of epoxy and polyester/ graphene and nanoclay systems. These complex coatings are expected to have considerably improved toughness, hardness and interfacial adhesion, thus enhancing formability and wear resistance of precoated metal sheets. Successful outcomes from this study will not only solve a long-standing problem in the manufacturing of precoated metals, but generate breakthrough technologies for next-generation nanocomposite coatings. Read moreRead less
Enabling Next-generation Rechargeable Aluminium-ion Batteries. This project aims to develop a new generation of high performance and low-cost cathode materials for rechargeable aluminium ion batteries. To address the low capacity issue of current cathodes, this project anticipates to generate new knowledge in the material design of novel graphene materials. By developing an innovative surface perforation technique coupled in a continuous production process, this project expects to produce scalab ....Enabling Next-generation Rechargeable Aluminium-ion Batteries. This project aims to develop a new generation of high performance and low-cost cathode materials for rechargeable aluminium ion batteries. To address the low capacity issue of current cathodes, this project anticipates to generate new knowledge in the material design of novel graphene materials. By developing an innovative surface perforation technique coupled in a continuous production process, this project expects to produce scalable and cost-effective graphene cathodes with a record-high capacity. Expected outcomes of this project include industrial adaptable manufacturing processing and advanced materials for aluminium ion batteries, thus increasing the competitiveness of the partner organisation in the rapid growing graphene market.
Read moreRead less
A comprehensive theoretical and simulation model for control of nucleation, prediction of as-cast grain size, and design of grain refining technology. The research will generate know-how and methods for predicting the as-cast microstructure of all metallic alloys. The outcomes enable the design of commercially viable grain refining technologies, and the development of novel microstructures that will improve the properties and quality of new products and contribute to waste and energy reduction.
Enabling Next-generation Rechargeable Aluminium-ion Batteries. This project aims to develop a new generation of high performance and low-cost cathode materials for rechargeable aluminium ion batteries. To address the low capacity issue of current cathodes, this project anticipates to generate new knowledge in the material design of novel graphene materials. By developing an innovative surface perforation technique coupled in a continuous production process, this project expects to produce scalab ....Enabling Next-generation Rechargeable Aluminium-ion Batteries. This project aims to develop a new generation of high performance and low-cost cathode materials for rechargeable aluminium ion batteries. To address the low capacity issue of current cathodes, this project anticipates to generate new knowledge in the material design of novel graphene materials. By developing an innovative surface perforation technique coupled in a continuous production process, this project expects to produce scalable and cost-effective graphene cathodes with a record-high capacity. Expected outcomes of this project include industrial adaptable manufacturing processing and advanced materials for aluminium ion batteries, thus increasing the competitiveness of the partner organisation in the rapid growing graphene market.
Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE140100156
Funder
Australian Research Council
Funding Amount
$250,000.00
Summary
Advanced Laser Additive Manufacturing System for Extended Applications to Surface Engineering, Direct Manufacturing and New Alloy Development. Advanced laser additive manufacturing system for extended applications to surface engineering, direct manufacturing and new alloy development: This project will provide an advanced laser additive manufacturing system for extended applications. Although the facility was originally designed for forefront additive manufacturing, it enables innovative resear ....Advanced Laser Additive Manufacturing System for Extended Applications to Surface Engineering, Direct Manufacturing and New Alloy Development. Advanced laser additive manufacturing system for extended applications to surface engineering, direct manufacturing and new alloy development: This project will provide an advanced laser additive manufacturing system for extended applications. Although the facility was originally designed for forefront additive manufacturing, it enables innovative research on surface engineering to solve the long standing corrosion and wear problems associated with metal components and to produce biomedical coatings on titanium implants. The facility can also be used to develop high quality alloys, including titanium and magnesium alloys, through an accelerated metallurgy approach, leading to breakthrough progress in metal research. Such alloys are highly desired by automotive and aerospace industries to improve fuel efficiency through weight reduction. Read moreRead less
Industrial Transformation Research Hubs - Grant ID: IH200100005
Funder
Australian Research Council
Funding Amount
$5,000,000.00
Summary
ARC Research Hub for Australian Steel Innovation. The Hub’s overarching goal is to support the transition of Australia’s steel manufacturing industry to a more sustainable, competitive and resilient position based on the creation of new, higher value-added products and more advanced manufacturing processes. It anticipates delivering original, innovative research designed to enable a necessary technological shift in the supply chain through integrating advanced enabling technologies in large and ....ARC Research Hub for Australian Steel Innovation. The Hub’s overarching goal is to support the transition of Australia’s steel manufacturing industry to a more sustainable, competitive and resilient position based on the creation of new, higher value-added products and more advanced manufacturing processes. It anticipates delivering original, innovative research designed to enable a necessary technological shift in the supply chain through integrating advanced enabling technologies in large and small businesses, developing step-change performance in anti-corrosion treatments and coating lines, generating more functional and durable products, and increasing resource intensities. It expects to train a more skillful and diverse workforce that will be critical in achieving this transformation.Read moreRead less
Industrial Transformation Research Hubs - Grant ID: IH140100018
Funder
Australian Research Council
Funding Amount
$4,711,583.00
Summary
ARC Research Hub for a World-class Future Fibre Industry. ARC Research Hub for a World-class Future Fibre Industry. This research hub aims to transform the Australian fibre industry into a dynamic sector focused on high-performance and high-value fibres and fibre-based products. Capitalising on the research team's combined strength in fibre science and technology, and working with highly innovative small and medium enterprises and international research leaders, the hub seeks to develop advance ....ARC Research Hub for a World-class Future Fibre Industry. ARC Research Hub for a World-class Future Fibre Industry. This research hub aims to transform the Australian fibre industry into a dynamic sector focused on high-performance and high-value fibres and fibre-based products. Capitalising on the research team's combined strength in fibre science and technology, and working with highly innovative small and medium enterprises and international research leaders, the hub seeks to develop advanced carbon fibres, nanofibres and high-performance novel fibres, as well as value-added applications of fibre materials. These materials are expected to help to reduce energy costs, minimise the environmental footprint of manufacturing processes and improve public health and safety. The hub will also train the next generation of industry-savvy fibre research leaders.Read moreRead less