Linkage Infrastructure, Equipment And Facilities - Grant ID: LE170100137
Funder
Australian Research Council
Funding Amount
$358,275.00
Summary
Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental conc ....Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental concepts, and enable combinatorial search and new thin film technology. It is anticipated that this facility will increase Australia’s international competitiveness in the development of advanced energy materials.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE210100153
Funder
Australian Research Council
Funding Amount
$497,264.00
Summary
Integrated In situ Characterisation Facilities for Energy Studies. This project aims to establish a new capability to reveal catalytic behaviour of materials under practical working conditions at multi-scale levels. Through in situ monitoring of surface, interface and structural properties of catalysts, this unique integrated facility will overcome current limitations due to a lack of understanding of reaction mechanism, by ex situ and/or individual in situ characterisations. This world-class fa ....Integrated In situ Characterisation Facilities for Energy Studies. This project aims to establish a new capability to reveal catalytic behaviour of materials under practical working conditions at multi-scale levels. Through in situ monitoring of surface, interface and structural properties of catalysts, this unique integrated facility will overcome current limitations due to a lack of understanding of reaction mechanism, by ex situ and/or individual in situ characterisations. This world-class facility will significantly advance a range of electrocatalysis, photocatalysis and battery applications for renewable energy-storage and clean-fuel generation. This will be Australia’s only platform; it will benefit a number of innovative research projects in energy, catalysis and environmental and materials science.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE220100427
Funder
Australian Research Council
Funding Amount
$446,000.00
Summary
Engineered multifunctional membranes for aqueous organic redox flow battery. This project aims to develop multifunctional membranes with high ion conductivity and selectivity and high energy density to address the key challenges in the development of aqueous organic redox flow battery for renewable energy storage. The project will develop novel methodologies for precisely tuning and functionalising microporous materials to achieve cost-effective and scalable fabrication of membranes with multi-f ....Engineered multifunctional membranes for aqueous organic redox flow battery. This project aims to develop multifunctional membranes with high ion conductivity and selectivity and high energy density to address the key challenges in the development of aqueous organic redox flow battery for renewable energy storage. The project will develop novel methodologies for precisely tuning and functionalising microporous materials to achieve cost-effective and scalable fabrication of membranes with multi-functions, thus improving the energy efficiency and retaining the cycling capacity of redox flow batteries. The advancement of multifunctional membranes will enhance the efficiency of storage of intermittent and fluctuating renewable resources, thereby contributing to the reduction of carbon footprint in Australia. Read moreRead less
Next-generation fluid-in-solid capacitor materials. This project will create next-generation materials to maximize the energy and power densities of electrochemical capacitors (ECs). The performance gap between batteries and ECs remains paradox. Devices with high energy and power densities will largely boost the performance of electric vehicles, mobile devices and smart grids. By innovating the design of capacitor materials using layered fluid-in-solid architecture, the project will produce new- ....Next-generation fluid-in-solid capacitor materials. This project will create next-generation materials to maximize the energy and power densities of electrochemical capacitors (ECs). The performance gap between batteries and ECs remains paradox. Devices with high energy and power densities will largely boost the performance of electric vehicles, mobile devices and smart grids. By innovating the design of capacitor materials using layered fluid-in-solid architecture, the project will produce new-concept ECs with energy density approaching to batteries. Such ECs will synchronously possess dramatically high power density, intrinsically unlike hybrid battery-capacitor. This project will maximize the efficiency of future electronics, vehicles and grids with the new generation ECs.Read moreRead less
Future sodium based electrochemical energy storage technologies. New rechargeable batteries will be developed through the use of breakthrough electrolytes based on liquid salts. These batteries are vital for the widespread use of renewables in Australia's electricity grid. They will also enable new generations of environmental sensor technology.
Discovery Early Career Researcher Award - Grant ID: De220100521
Funder
Australian Research Council
Summary
Engineering semitransparent perovskite solar cells for smart solar windows. This project aims to develop highly efficient and stable semitransparent perovskite solar cells for innovative smart solar windows. The key concept is to explore novel functionalisation strategies on emerging carbon and two-dimensional materials to fabricate semitransparent perovskite solar cells for self-powered smart photovoltaic windows. Expected outcomes of this project include not only placing Australia at the foref ....Engineering semitransparent perovskite solar cells for smart solar windows. This project aims to develop highly efficient and stable semitransparent perovskite solar cells for innovative smart solar windows. The key concept is to explore novel functionalisation strategies on emerging carbon and two-dimensional materials to fabricate semitransparent perovskite solar cells for self-powered smart photovoltaic windows. Expected outcomes of this project include not only placing Australia at the forefront of research in the fields of materials science and renewable energy, but also creating commercial opportunities in Australia. This project expects to have various benefits for Australians – through the development of a cutting-edge sustainable energy device and the establishment of strong international collaborations.Read moreRead less
Solar-thermal desalination system for parallel water-electricity generation. This project aims to develop a multi-functional solar-thermal desalination device to simultaneously produce clean water and electricity. Interfacial solar evaporation-based desalination technology has the unique advantage of using solar light as the sole energy source for affordable clean water production. However, its absolute evaporation rate is still too low for practical application and all of the latent heat releas ....Solar-thermal desalination system for parallel water-electricity generation. This project aims to develop a multi-functional solar-thermal desalination device to simultaneously produce clean water and electricity. Interfacial solar evaporation-based desalination technology has the unique advantage of using solar light as the sole energy source for affordable clean water production. However, its absolute evaporation rate is still too low for practical application and all of the latent heat released from vapor condensation during desalination is wasted. Solving these two critical issues by the study of energy nexus, design and fabrication of advanced photothermal materials and desalination devices could accelerate practical adoption of this technology and benefit millions of people who desperately need clean water. Read moreRead less
Redox-sensitised dense graphene to boost compact supercapacitors. This project will create redox-sensitised ion-accessible dense graphene to improve the energy density of supercapacitors (SCs). The energy density of SCs is a bottle neck for long-lasting power supply to vehicles, small devices and mobile electronics. By incorporating a redox coordination framework in shrunk graphene to increase the charge storage capacity and speed up the charge movement and further incorporating ionic liquids in ....Redox-sensitised dense graphene to boost compact supercapacitors. This project will create redox-sensitised ion-accessible dense graphene to improve the energy density of supercapacitors (SCs). The energy density of SCs is a bottle neck for long-lasting power supply to vehicles, small devices and mobile electronics. By incorporating a redox coordination framework in shrunk graphene to increase the charge storage capacity and speed up the charge movement and further incorporating ionic liquids in the tailored electrodes, the project will produce SC’s with higher operating voltage and longer cycle life. Such SCs will possess dramatically high energy density, without compromising the power density. This project will improve the efficiency of modern electronics through the development of the next generation of SCs.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE220100521
Funder
Australian Research Council
Funding Amount
$415,000.00
Summary
Engineering semitransparent perovskite solar cells for smart solar windows. This project aims to develop highly efficient and stable semitransparent perovskite solar cells for innovative smart solar windows. The key concept is to explore novel functionalisation strategies on emerging carbon and two-dimensional materials to fabricate semitransparent perovskite solar cells for self-powered smart photovoltaic windows. Expected outcomes of this project include not only placing Australia at the foref ....Engineering semitransparent perovskite solar cells for smart solar windows. This project aims to develop highly efficient and stable semitransparent perovskite solar cells for innovative smart solar windows. The key concept is to explore novel functionalisation strategies on emerging carbon and two-dimensional materials to fabricate semitransparent perovskite solar cells for self-powered smart photovoltaic windows. Expected outcomes of this project include not only placing Australia at the forefront of research in the fields of materials science and renewable energy, but also creating commercial opportunities in Australia. This project expects to have various benefits for Australians – through the development of a cutting-edge sustainable energy device and the establishment of strong international collaborations.Read moreRead less
Controlling and Understanding Interface Chemistry for Energy Conversions. This project aims to develop a promising electrocatalyst technology platform, based on novel 2D material architectures that have applications ranging from hydrogen generation via water splitting through to carbon dioxide reduction. The project is expected to generate advanced knowledge for the rational design of electrocatalysts and to promote the development of renewable energy technologies. Expected outcomes include a cl ....Controlling and Understanding Interface Chemistry for Energy Conversions. This project aims to develop a promising electrocatalyst technology platform, based on novel 2D material architectures that have applications ranging from hydrogen generation via water splitting through to carbon dioxide reduction. The project is expected to generate advanced knowledge for the rational design of electrocatalysts and to promote the development of renewable energy technologies. Expected outcomes include a clear understanding of the relevant fundamental science and mechanisms, a framework for designing and optimising for specific applications, and a demonstration of prototype devices. This project is of great benefit for addressing Australia’s energy and environmental concerns and boosting national economic growth as well.Read moreRead less