Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100223
Funder
Australian Research Council
Funding Amount
$340,000.00
Summary
Advanced X-ray diffraction facility for high energy and extreme conditions. X-ray powder diffraction is a powerful technique for determining the structure of matter at the atomic scale. This project will establish a new Australian capability for X-ray powder diffraction under extreme conditions that emulate real harsh service environments for advanced functional materials.
Discovery Early Career Researcher Award - Grant ID: De190100219
Funder
Australian Research Council
Summary
Engineering of exotic electronic properties in atomically thin antimony. This project aims to introduce a new method of engineering electronic resistance properties of materials to reduce energy consumption in computation. Next-generation electronic devices require materials hosting current at near-zero resistance to reduce energy consumption and heat dissipation in computation. Using a novel air-stable topological material, the project will use band engineering techniques to enable the producti ....Engineering of exotic electronic properties in atomically thin antimony. This project aims to introduce a new method of engineering electronic resistance properties of materials to reduce energy consumption in computation. Next-generation electronic devices require materials hosting current at near-zero resistance to reduce energy consumption and heat dissipation in computation. Using a novel air-stable topological material, the project will use band engineering techniques to enable the production of near-zero resistance electronic material. This project will advance the knowledge required for exploring and designing materials with novel electronic properties. The advanced materials engineering techniques and exotic phase of matter identified in this project will support the development of next-generation electronic device technologies.Read moreRead less
Atomically thin superconductors. This project aims to explore two-dimensional superconducting materials and elucidate the origins of their superconductivity. High temperature superconductivity in single layer iron-based superconductors offers a platform for exploring superconductors with even higher critical temperature (Tc) and has aroused great hope of understanding the underlying mechanisms for high Tc superconductivity. This project is expected to introduce physics and materials, leading to ....Atomically thin superconductors. This project aims to explore two-dimensional superconducting materials and elucidate the origins of their superconductivity. High temperature superconductivity in single layer iron-based superconductors offers a platform for exploring superconductors with even higher critical temperature (Tc) and has aroused great hope of understanding the underlying mechanisms for high Tc superconductivity. This project is expected to introduce physics and materials, leading to a better understanding of the two-dimensional superconducting phenomenon and the discovery of physical phenomena for new electronic devices.Read moreRead less
Core loss mechanisms in soft magnetic nanostructures. This project aims to clarify the mechanism of power losses in magnetic cores used in the petrol-electric hybrid cars by investigating the relationship between the core losses and magnetic correlation lengths in iron alloys. This project expects to generate new knowledge on the effect of magneto-mechanical interaction on the anomalous core loss in iron based alloys. The intended outcomes include an experimental confirmation of the random aniso ....Core loss mechanisms in soft magnetic nanostructures. This project aims to clarify the mechanism of power losses in magnetic cores used in the petrol-electric hybrid cars by investigating the relationship between the core losses and magnetic correlation lengths in iron alloys. This project expects to generate new knowledge on the effect of magneto-mechanical interaction on the anomalous core loss in iron based alloys. The intended outcomes include an experimental confirmation of the random anisotropy model, a major theoretical model in nanostructured materials and identification of ideal magnetic domain configurations for lower power losses. These intended outcomes should bring great benefits to the development of low-carbon vehicle technologies for sustainable motorisation in Australia.Read moreRead less
Development of a solid nitrogen cooled magnesium diboride (MgB2) magnet for persistent-mode operation. Soaring price for liquid helium has increased demand for cryogen-free superconducting magnets more than ever. If magnetic resonance imaging magnets, which represent over 50 per cent of the world superconducting markets, could be operated without liquid helium, magnetic resonance imaging would be much more affordable and enable reduced health care costs.
Topological spin systems as basis for multifunctional materials. This project aims to investigate the fundamental properties (magnetic structure, surface topology, dynamics and interaction with external stimuli) of topological spin systems. Unconventional topological spin structures at the nanometre scale, such as skyrmions in chiral spin systems, could be used in ultra-low energy electronics and high density data storage. In particular, multi-ferroic skyrmion materials could directly control sk ....Topological spin systems as basis for multifunctional materials. This project aims to investigate the fundamental properties (magnetic structure, surface topology, dynamics and interaction with external stimuli) of topological spin systems. Unconventional topological spin structures at the nanometre scale, such as skyrmions in chiral spin systems, could be used in ultra-low energy electronics and high density data storage. In particular, multi-ferroic skyrmion materials could directly control skyrmions through an external electric field, which makes them ideal for nanoelectronics and data storage for IT applications. This project will create and investigate skyrmion materials as the basis for next generation computer and information technology in Australia.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100127
Funder
Australian Research Council
Funding Amount
$250,000.00
Summary
Hall effect system for detailed electrical characterisation in semiconductors. Semiconductor characterisation is crucial for research and development in optimum growth and fabrication procedures. This Hall effect measurement system is an essential carrier characterisation technique for semiconductors with potential applications in microelectronics, optoelectronics and photovoltaics.
Neuromorphic Sensing and Diagnostics with Carbon: Towards a Biomimetic Nose. Neuromorphic electronics emulates cognitive processes of the brain and like the brain, is capable of extracting features and recognising patterns within data with extremely low energy requirements. Carbon materials are naturally adapted to neuromorphic electronics and uniquely form a compatible interface for sensing molecules in liquid and gaseous media. This project aims to develop a carbon-based neuromorphic electroni ....Neuromorphic Sensing and Diagnostics with Carbon: Towards a Biomimetic Nose. Neuromorphic electronics emulates cognitive processes of the brain and like the brain, is capable of extracting features and recognising patterns within data with extremely low energy requirements. Carbon materials are naturally adapted to neuromorphic electronics and uniquely form a compatible interface for sensing molecules in liquid and gaseous media. This project aims to develop a carbon-based neuromorphic electronic sensing device and couple it with carbon based neuromorphic pattern recognition technology to build an ‘artificial nose’ for improved health and environmental monitoring. Intended outcomes will include a technology for low-cost and rapid diagnostic services.
Read moreRead less
Towards room-temperature multiferroics by doping and ionic liquid gating . This project aims to develop new multiferroic materials for high performance computing and data storage technologies. Semiconductor industry leaders have identified the development of these materials, operating a room temperature, as a key challenge in enabling future high speed, high performance logic and memory devices. The intended outcomes of this work are (i) the delivery of new multiferroic materials by magnetic do ....Towards room-temperature multiferroics by doping and ionic liquid gating . This project aims to develop new multiferroic materials for high performance computing and data storage technologies. Semiconductor industry leaders have identified the development of these materials, operating a room temperature, as a key challenge in enabling future high speed, high performance logic and memory devices. The intended outcomes of this work are (i) the delivery of new multiferroic materials by magnetic doping of a semiconductor, strained to a ferroelectric state and (ii) the demonstration of a new paradigm in materials design to realise such materials. The key benefit of this work is the enabling of next generation computing and memory devices exhibiting higher speeds, reduced sizes and lower power consumption. Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100197
Funder
Australian Research Council
Funding Amount
$375,000.00
Summary
A magnetic property measurement facility for the development of advanced materials and biomedical technologies in the Sydney basin. The measurement of magnetic properties is important in the study both of magnetic and electronic materials and biological systems. This new equipment will support a diverse array of high impact research, spanning the fundamental to the applied, and will bring together complementary expertise from multiple disciplines and institutions.