Development of novel safe lithium metal-free sulphur batteries. Development of novel safe lithium metal-free sulphur batteries. This project aims to develop a lithium-metal-free sulphur battery system, and technology to commercialise this battery technology. Expected outcomes include an electrochemical system consisting of a selected promising lithium sulphide cathode, an alloying type anode and a liquid-based electrolyte, and large lithium-ion sulphur batteries with selected advanced electrode ....Development of novel safe lithium metal-free sulphur batteries. Development of novel safe lithium metal-free sulphur batteries. This project aims to develop a lithium-metal-free sulphur battery system, and technology to commercialise this battery technology. Expected outcomes include an electrochemical system consisting of a selected promising lithium sulphide cathode, an alloying type anode and a liquid-based electrolyte, and large lithium-ion sulphur batteries with selected advanced electrode materials and electrolytes. Anticipated outcomes are the improved safety of typical lithium-sulphur batteries; that Australia will be internationally competitive in the area of energy storage; and increased overseas demand for Australian raw materials for manufacturing lithium-ion batteries.Read moreRead less
Functionalising sustainable natural binders for energy storage devices. This project aims to produce low-cost energy storage devices to meet the energy demands and safety requirements of electric appliances, electric vehicles and smart electricity grids. High-cost and non-regenerable resources and existing energy storage devices’ safety issues have hindered the electrification of portable electronic devices and vehicles and use of intermittent solar and wind energy. This project will use sustain ....Functionalising sustainable natural binders for energy storage devices. This project aims to produce low-cost energy storage devices to meet the energy demands and safety requirements of electric appliances, electric vehicles and smart electricity grids. High-cost and non-regenerable resources and existing energy storage devices’ safety issues have hindered the electrification of portable electronic devices and vehicles and use of intermittent solar and wind energy. This project will use sustainable natural polymers to develop green electrode technologies for manufacturing batteries with greatly reduced production and environmental cost. The in-depth understandings from the combination of experiments and computation simulations will help create strategies to realise low cost, long-life and safe batteries.Read moreRead less
Sodium-ion batteries for renewable energy storage. This project aims to develop sodium-ion batteries for renewable energy storage and conversion. Electrical energy storage is important for integrating renewable energy sources, improving grid reliability, and intelligently managing peak demand. Sodium-ion batteries are promising for large scale energy storage applications because of low cost and natural abundance of sodium. This project will integrate materials architecture design, synthesise cat ....Sodium-ion batteries for renewable energy storage. This project aims to develop sodium-ion batteries for renewable energy storage and conversion. Electrical energy storage is important for integrating renewable energy sources, improving grid reliability, and intelligently managing peak demand. Sodium-ion batteries are promising for large scale energy storage applications because of low cost and natural abundance of sodium. This project will integrate materials architecture design, synthesise cathode materials, model and test electrochemistry, and make prototype batteries. This project is expected to help the Government meet its renewable energy target, improve utilities’ power quality and reliability, create industry opportunities, and maintain Australia’s high standing in energy research.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE220100746
Funder
Australian Research Council
Funding Amount
$433,000.00
Summary
Engineering ion specificity for water electrolysis. This project aims to understand how foreign ions in water can be manipulated to selectively control the activity and selectivity of electrocatalytic water splitting and explore the potential if seawater or low-grade-water can be used as water feed to mitigate the economical barrier for large-scale hydrogen production through electrolysis. The new knowledge gained will be helpful for future design of more cost-effective electrolyser systems to u ....Engineering ion specificity for water electrolysis. This project aims to understand how foreign ions in water can be manipulated to selectively control the activity and selectivity of electrocatalytic water splitting and explore the potential if seawater or low-grade-water can be used as water feed to mitigate the economical barrier for large-scale hydrogen production through electrolysis. The new knowledge gained will be helpful for future design of more cost-effective electrolyser systems to underpin Australia’s emerging hydrogen economy.Read moreRead less
Nanoscale electrochemical imaging of catalyst inks for water oxidation. This project aims to reduce the cost of current water splitting technology by making new catalysts from earth abundant materials that will ensure a sustainable technological solution for the storage of renewable energy. This technology is an excellent solution to storing energy from intermittent renewable energy sources such as solar as it generates hydrogen which is a clean fuel. Using new techniques that can image the cata ....Nanoscale electrochemical imaging of catalyst inks for water oxidation. This project aims to reduce the cost of current water splitting technology by making new catalysts from earth abundant materials that will ensure a sustainable technological solution for the storage of renewable energy. This technology is an excellent solution to storing energy from intermittent renewable energy sources such as solar as it generates hydrogen which is a clean fuel. Using new techniques that can image the catalyst at the nanoscale while it is operating is expected to provide the knowledge for developing the next generation of water splitting electrolysers that can be utilised by households and businesses for storing solar or wind energy.Read moreRead less
Lithium-air battery: a green energy source for the sustainable future. Electrification of vehicles and the implementation of smart electric grids can dramatically reduce greenhouse gas emissions and realise sustainable development. Lithium-air batteries have the highest energy density among all battery systems and are therefore a promising power source for electric vehicles and stationary energy storage.
Multifunctional and environmentally friendly corrosion inhibitor systems. This project aims to design new, environmentally friendly coating systems for steel in marine environments by incorporating novel, non-toxic pigments that can be combined to protect against both corrosion and microbial attack. Structural requirements for these compounds will be determined through the use of advanced characterisation techniques to identify the largely unknown mechanisms of attachment and protection on steel ....Multifunctional and environmentally friendly corrosion inhibitor systems. This project aims to design new, environmentally friendly coating systems for steel in marine environments by incorporating novel, non-toxic pigments that can be combined to protect against both corrosion and microbial attack. Structural requirements for these compounds will be determined through the use of advanced characterisation techniques to identify the largely unknown mechanisms of attachment and protection on steel surfaces. The components may themselves be dual active, or be combined to capitalise on individual protection mechanisms that provide a synergy whereby the combination leads to better protection outcomes. Such coatings have the potential to significantly improve the lifetime of marine infrastructure.Read moreRead less
Fabrication of High Performance Nanocomposite Photoanodes with Built-in Electron Transport Superhighway for Photoelectrocatalysis Applications. Worldwide, huge fresh water shortage problems force us to recycle/reuse water. For Australia, this is an urgent issue due to our limited fresh water resources. In recent years, rapidly diminishing fossil fuel supplies and dramatically accelerated global warming gives society no alternative but adopt renewable, clean energies. Globally, there is a united ....Fabrication of High Performance Nanocomposite Photoanodes with Built-in Electron Transport Superhighway for Photoelectrocatalysis Applications. Worldwide, huge fresh water shortage problems force us to recycle/reuse water. For Australia, this is an urgent issue due to our limited fresh water resources. In recent years, rapidly diminishing fossil fuel supplies and dramatically accelerated global warming gives society no alternative but adopt renewable, clean energies. Globally, there is a united front calling for action to address these problems. However, a practical solution to the issues can only be found when economically viable alternative technologies are developed. This project aims to tackle the biggest obstacle - the low sunlight conversion efficiency. The success of the project will result in economically viable water treatment and solar energy conversion technologies. Read moreRead less
High energy density, long life, safe lithium Ion battery for electric cars. This project aims to develop next-generation lithium-ion batteries with high energy density, safety, long cycle life, and fast charge capability, using a Ni-rich layered oxide cathode and silicon/carbon composite anode. This lithium-ion battery system is expected to meet 2020 targets for electric vehicles. The project will also investigate the reaction/electrode fading mechanism of the proposed anode/cathode materials fo ....High energy density, long life, safe lithium Ion battery for electric cars. This project aims to develop next-generation lithium-ion batteries with high energy density, safety, long cycle life, and fast charge capability, using a Ni-rich layered oxide cathode and silicon/carbon composite anode. This lithium-ion battery system is expected to meet 2020 targets for electric vehicles. The project will also investigate the reaction/electrode fading mechanism of the proposed anode/cathode materials for the deep understanding of these electrode materials, and provide guidance for future electrode materials design and battery research. This will provide significant benefits for automotive industries, smart grid, and business in storing renewable energy and better environment and sustainability.Read moreRead less
Novel Fuel-Cell Structures based on Electroactive Polymers. The Discovery Project will tackle some of the challenging issues regarding the conversion of our society into a post-petroleum era through: Development and understanding of a new class of organic catalysts for efficient low temperature fuel-cells; Developing cheap and effective, ultra-thin, ion-conducting membranes for fuel-cells based on new plasma-polymers; and Integrating the components into fuel-cells suitable for stationary, portab ....Novel Fuel-Cell Structures based on Electroactive Polymers. The Discovery Project will tackle some of the challenging issues regarding the conversion of our society into a post-petroleum era through: Development and understanding of a new class of organic catalysts for efficient low temperature fuel-cells; Developing cheap and effective, ultra-thin, ion-conducting membranes for fuel-cells based on new plasma-polymers; and Integrating the components into fuel-cells suitable for stationary, portable and automotive applications. These outcomes will contribute to national research priorities: Frontier Technologies for building and transforming Australian Industries, and An Environmentally Sustainable Australia.
Read moreRead less