Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100188
Funder
Australian Research Council
Funding Amount
$1,000,000.00
Summary
Epitaxial growth facility for advanced materials. An advanced materials fabrication facility accessible to all Australian researchers will be established. This will allow crystal growth at the atomic level for novel materials with applications including fundamental physics, nanocomposites, energy storage and conversion systems, and solar cells.
Defect generation in hetero-epitaxy on lattice mismatched substrates. High quality lattice mismatched semiconductor heterostructures are core enabling technologies for next generation electronic and optoelectronic devices with new functions and features such as monolithic integration, lower production costs, larger wafer size, and better system robustness. This project will generate new science on defect generation in lattice mismatched hetero-epitaxy with the aim of developing novel strategies ....Defect generation in hetero-epitaxy on lattice mismatched substrates. High quality lattice mismatched semiconductor heterostructures are core enabling technologies for next generation electronic and optoelectronic devices with new functions and features such as monolithic integration, lower production costs, larger wafer size, and better system robustness. This project will generate new science on defect generation in lattice mismatched hetero-epitaxy with the aim of developing novel strategies for their minimisation. The direct outcome will be higher quality HgCdTe materials on lattice mismatched Si or III-V substrates with defect density low enough for fabricating high performance mid-wave and long-wave infrared arrays with features of lower cost, larger array format size, and higher operating temperature.Read moreRead less
Towards energy-efficient lighting based on light-emitting diodes: the role of silicon carbide grown on Si Wafers. This project will investigate a potential solution to the problems of cost and quality of light-emitting diodes for solid-state lighting. The expected outcome is knowledge to underpin future development of solid-state lighting that is suitable for a wide replacement of the much less efficient and effective incandescent bulbs and fluorescent tubes.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100127
Funder
Australian Research Council
Funding Amount
$250,000.00
Summary
Hall effect system for detailed electrical characterisation in semiconductors. Semiconductor characterisation is crucial for research and development in optimum growth and fabrication procedures. This Hall effect measurement system is an essential carrier characterisation technique for semiconductors with potential applications in microelectronics, optoelectronics and photovoltaics.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100036
Funder
Australian Research Council
Funding Amount
$440,000.00
Summary
National in-situ transmission electron microscope facilities. This project will establish six complementary transmission electron microscope (TEM) facilities at various locations. The establishment of the facilities will be a key step in developing advanced capacity in Australia and will support ground-breaking research in diverse material systems for various high-performing applications, including electronics, optoelectronics, light metals, biomaterials, energy, and environment.
III-V semiconductor nanowire solar cells without p-n junctions. This project proposes a new class of nanowire solar cells that do not rely on conventional electrical (p-n) junction for photo-generated charge carrier separation. Instead the band structure of the semiconductors is engineered to form a misalignment which leads to the spatial separation of carriers. This approach is expected to fundamentally change the design of solar cells, eliminating the technologically challenging need for formi ....III-V semiconductor nanowire solar cells without p-n junctions. This project proposes a new class of nanowire solar cells that do not rely on conventional electrical (p-n) junction for photo-generated charge carrier separation. Instead the band structure of the semiconductors is engineered to form a misalignment which leads to the spatial separation of carriers. This approach is expected to fundamentally change the design of solar cells, eliminating the technologically challenging need for forming good electrical junctions, while retaining all advantages inherent to III-V semiconductor nanowire solar cells. More importantly, the device concept proposed is expected to have implications for a wider class of solar cells based on exotic/novel materials or nanostructures where achieving both n- and p-doping may be challenging.Read moreRead less
van der Waals epitaxy for advanced and flexible optoelectronics. This project aims to investigate the growth of compound semiconductors directly on two-dimensional material templates, via the so-called van der Waals epitaxy. Two-dimensional materials combined with compound semiconductors as optoelectronic materials can have many uses. This project expects to design flexible solar cells, which could be integrated with fabrics or building products, and lasers that need small drive currents. It wil ....van der Waals epitaxy for advanced and flexible optoelectronics. This project aims to investigate the growth of compound semiconductors directly on two-dimensional material templates, via the so-called van der Waals epitaxy. Two-dimensional materials combined with compound semiconductors as optoelectronic materials can have many uses. This project expects to design flexible solar cells, which could be integrated with fabrics or building products, and lasers that need small drive currents. It will use the Anderson localisation effect, a photon management concept, to control the interaction between photons and material and improve device efficiencies.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: Le160100054
Funder
Australian Research Council
Summary
High Temperature Atomic Structure and Physical Property Analysis Facility. High temperature atomic structure and physical property analysis facility:
The aim of this project is to strengthen Australian research activities in the development of advanced materials for novel multifunctional devices, sensors, catalysts, engineering components and energy technologies through the purchase of a state-of-the-art high temperature atomic structure and physical property analysis facility. The facility is ....High Temperature Atomic Structure and Physical Property Analysis Facility. High temperature atomic structure and physical property analysis facility:
The aim of this project is to strengthen Australian research activities in the development of advanced materials for novel multifunctional devices, sensors, catalysts, engineering components and energy technologies through the purchase of a state-of-the-art high temperature atomic structure and physical property analysis facility. The facility is designed to consist of a high temperature scanning tunnelling microscope and a high temperature AC field hall effect measurement system to form a powerful and versatile high temperature atomic structure and physical property analysis facility. This is expected to provide a unique research capability in in-situ analysis of atomic and electronic behaviours with the correlated physical properties including carrier concentration and mobility at temperatures exceeding 1300 K. Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100164
Funder
Australian Research Council
Funding Amount
$680,000.00
Summary
Dynamic phase behaviour characterisation facility for nanostructured interfaces and solids. This infrastructure will increase our understanding of interfacial phenomena of nanostructured materials over very short periods of time. This new understanding will allow optimisation of the correlation of the chemistry of a material to the properties of that material. The infrastructure will enhance Australia's capabilities in creating new materials relevant to electronics, medicine, the environment and ....Dynamic phase behaviour characterisation facility for nanostructured interfaces and solids. This infrastructure will increase our understanding of interfacial phenomena of nanostructured materials over very short periods of time. This new understanding will allow optimisation of the correlation of the chemistry of a material to the properties of that material. The infrastructure will enhance Australia's capabilities in creating new materials relevant to electronics, medicine, the environment and security technologies.Read moreRead less
Defect control for high-performance green kesterites energy materials. This project will tackle the fundamental challenge of defect control of the quaternary compound kesterite, revolutionizing the way we can understand the hidden defect-evolution process and design accordingly effective defect-control approaches. This will be realized by a systematic approach integrating multiscale materials characterization, process and materials modeling, and linking microscopic local chemical potential and m ....Defect control for high-performance green kesterites energy materials. This project will tackle the fundamental challenge of defect control of the quaternary compound kesterite, revolutionizing the way we can understand the hidden defect-evolution process and design accordingly effective defect-control approaches. This will be realized by a systematic approach integrating multiscale materials characterization, process and materials modeling, and linking microscopic local chemical potential and macroscopic processing conditions, and associated compound properties and device performance to control defects evolution. Successfully achieved, this project will realize full potential of kesterite in photovoltaic and photoelectrochemical applications, and leading to new discoveries in other compound energy materials.Read moreRead less