Linkage Infrastructure, Equipment And Facilities - Grant ID: LE180100002
Funder
Australian Research Council
Funding Amount
$808,191.00
Summary
A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The fa ....A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The facility will significantly enhance the research capability in the newly established ARC Training Centre for Automated Manufacture of Advanced Composites, which will engage with Australian industry to improve productivity and material performance for industry sectors such as aerospace, automotive, marine, and sport.Read moreRead less
Multifunctional Three-Dimensional Non-Crimp Fibre Preforms for Polymer Composites: Innovative High-Value Products for the Australian Textiles Industry. This project aims to develop a new three-dimensional (3D) weaving technology for fabricating multi-functional fabrics for advanced fibre-reinforced composites. 3D woven fabrics with low fibre waviness for high structural performance, integrally woven optical fibre sensors for loads monitoring and damage detection, and woven thermoplastic filament ....Multifunctional Three-Dimensional Non-Crimp Fibre Preforms for Polymer Composites: Innovative High-Value Products for the Australian Textiles Industry. This project aims to develop a new three-dimensional (3D) weaving technology for fabricating multi-functional fabrics for advanced fibre-reinforced composites. 3D woven fabrics with low fibre waviness for high structural performance, integrally woven optical fibre sensors for loads monitoring and damage detection, and woven thermoplastic filaments for self-healing aim to meet the emerging demands of industry for light-weight high-performance composites. This new technology aims to deliver to the Australian textiles and clothing industry a new capability in manufacturing carbon-fibre based fabrics as reinforcements in advanced composites, thus helping reinvigorate and realign an important Australian industry sector.Read moreRead less
Materials Engineering Solutions for Tomorrow's Water Resources. This proposal concerns the development of advanced technologies informed by knowledge management systems to ensure the continued provision of high-quality drinking water to Australian. This is particularly important as we see the impacts from climate change and extreme weather variability with catastrophic consequences such as recently seen in Victoria and in Queensland on water catchments and water quality and supply. The challenge ....Materials Engineering Solutions for Tomorrow's Water Resources. This proposal concerns the development of advanced technologies informed by knowledge management systems to ensure the continued provision of high-quality drinking water to Australian. This is particularly important as we see the impacts from climate change and extreme weather variability with catastrophic consequences such as recently seen in Victoria and in Queensland on water catchments and water quality and supply. The challenges of adequate water resourcing, both in quantity and quality, for Australians who wish to lead healthy and productive lives are serious and require collaboration between industry, government and research providers such as is proposed here. Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100188
Funder
Australian Research Council
Funding Amount
$1,000,000.00
Summary
Epitaxial growth facility for advanced materials. An advanced materials fabrication facility accessible to all Australian researchers will be established. This will allow crystal growth at the atomic level for novel materials with applications including fundamental physics, nanocomposites, energy storage and conversion systems, and solar cells.
A Novel Approach to Polymer/Nanosheet Composites and Their Fundamentals. Multifunctional Polymer/nanosheet composites have not yet been widely scaled up in polymer processing and composite industries mainly due to cost and inhaling hazard. This project proposes a novel methodology which embeds nanosheet preparation within polymer melt to both remove the inhaling hazard and lower the cost; the key is to develop two groups of nanosheet intercalation compounds which can expand at the polymer proces ....A Novel Approach to Polymer/Nanosheet Composites and Their Fundamentals. Multifunctional Polymer/nanosheet composites have not yet been widely scaled up in polymer processing and composite industries mainly due to cost and inhaling hazard. This project proposes a novel methodology which embeds nanosheet preparation within polymer melt to both remove the inhaling hazard and lower the cost; the key is to develop two groups of nanosheet intercalation compounds which can expand at the polymer processing temperature, to exfoliate and disperse nanosheets in polymers. It is expected to generate new knowledge of the structure-property relationships and fracture mechanisms of these composites, for industry to scale up this technology and to develop new product.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE100100030
Funder
Australian Research Council
Funding Amount
$1,200,000.00
Summary
Advanced focused ion beam (FIB) / scanning electron microscopes (SEM) for nanometre scale characterisation and fabrication. These instruments are designed to provide fundamental insights into physical and biological systems though characterisation and fabrication of structures at nanometre length scales. These versatile platforms will support a wide range of projects covering three national research priority areas. These range from the characterisation of light alloys for improving and building ....Advanced focused ion beam (FIB) / scanning electron microscopes (SEM) for nanometre scale characterisation and fabrication. These instruments are designed to provide fundamental insights into physical and biological systems though characterisation and fabrication of structures at nanometre length scales. These versatile platforms will support a wide range of projects covering three national research priority areas. These range from the characterisation of light alloys for improving and building Australia's Aluminium, Magnesium and Titanium alloy industries, to the study of aerosol particles for improved pulmonary drug delivery for asthma patients, the development of advanced solar cells and the study of the integrated behaviour of the soil-microbe system for sustainable agriculture.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE190100311
Funder
Australian Research Council
Funding Amount
$360,000.00
Summary
Multidirectional stretchable and wearable tactile sensors. This project aims to establish a new platform for multidirectional wearable tactile sensors with high sensitivity and stretchability based on rational material designs and structural engineering. Wearable tactile sensors with multidirectional force-sensing capabilities are of great importance in robotics, prosthetics, and rehabilitation devices. This novel form of tactile sensing will be developed through fundamental research into the wo ....Multidirectional stretchable and wearable tactile sensors. This project aims to establish a new platform for multidirectional wearable tactile sensors with high sensitivity and stretchability based on rational material designs and structural engineering. Wearable tactile sensors with multidirectional force-sensing capabilities are of great importance in robotics, prosthetics, and rehabilitation devices. This novel form of tactile sensing will be developed through fundamental research into the working mechanism of directional sensors to enable detection of different force intensities. Combined with new device fabrication techniques, and innovative material structural engineering, the expected outcome is a new multidirectional tactile sensor system with high sensitivity and stretchability.Read moreRead less
Low cost solution-processable 2D nanomaterials for smart windows. This project aims to develop low cost and scalable synthesis of the active functional nanomaterials in smart windows, their facile application techniques, and their integration into the glass manufacturing process. Smart windows, with thermochromic and electrochromic functionalities, will play important roles towards efficient energy usage and conservation (in terms of air-conditioning and lighting) in most buildings including off ....Low cost solution-processable 2D nanomaterials for smart windows. This project aims to develop low cost and scalable synthesis of the active functional nanomaterials in smart windows, their facile application techniques, and their integration into the glass manufacturing process. Smart windows, with thermochromic and electrochromic functionalities, will play important roles towards efficient energy usage and conservation (in terms of air-conditioning and lighting) in most buildings including offices, schools, and residential homes. . The intended outcome of this project is to facilitate the commercialisation of low-cost, energy-saving smart windows for efficient energy usage and conservation, which is an integral part of a sustainable environment.Read moreRead less
Controllable synthesis of multifunctional boron-based 2D materials. This project aims to make it possible to control the synthesis of boron-based two-dimensional (2D) materials with the desired following features in single or multiple aspects: thickness, composition, lateral sizes, porosity, surface area, and functionality. It intends to do so by designing and synthesising novel precursors, and by optimising the fabrication process of boron-based 2D nanosheets for different applications. The pro ....Controllable synthesis of multifunctional boron-based 2D materials. This project aims to make it possible to control the synthesis of boron-based two-dimensional (2D) materials with the desired following features in single or multiple aspects: thickness, composition, lateral sizes, porosity, surface area, and functionality. It intends to do so by designing and synthesising novel precursors, and by optimising the fabrication process of boron-based 2D nanosheets for different applications. The project will advance our fundamental knowledge in synthetic chemistry, materials chemistry, materials engineering and physics. It is expected to take us closer to unlocking the potential of boron-based 2D materials for real-world applications in, for example, energy storage and high-performance flexible electronics.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100223
Funder
Australian Research Council
Funding Amount
$340,000.00
Summary
Advanced X-ray diffraction facility for high energy and extreme conditions. X-ray powder diffraction is a powerful technique for determining the structure of matter at the atomic scale. This project will establish a new Australian capability for X-ray powder diffraction under extreme conditions that emulate real harsh service environments for advanced functional materials.