Linkage Infrastructure, Equipment And Facilities - Grant ID: LE180100002
Funder
Australian Research Council
Funding Amount
$808,191.00
Summary
A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The fa ....A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The facility will significantly enhance the research capability in the newly established ARC Training Centre for Automated Manufacture of Advanced Composites, which will engage with Australian industry to improve productivity and material performance for industry sectors such as aerospace, automotive, marine, and sport.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE100100030
Funder
Australian Research Council
Funding Amount
$1,200,000.00
Summary
Advanced focused ion beam (FIB) / scanning electron microscopes (SEM) for nanometre scale characterisation and fabrication. These instruments are designed to provide fundamental insights into physical and biological systems though characterisation and fabrication of structures at nanometre length scales. These versatile platforms will support a wide range of projects covering three national research priority areas. These range from the characterisation of light alloys for improving and building ....Advanced focused ion beam (FIB) / scanning electron microscopes (SEM) for nanometre scale characterisation and fabrication. These instruments are designed to provide fundamental insights into physical and biological systems though characterisation and fabrication of structures at nanometre length scales. These versatile platforms will support a wide range of projects covering three national research priority areas. These range from the characterisation of light alloys for improving and building Australia's Aluminium, Magnesium and Titanium alloy industries, to the study of aerosol particles for improved pulmonary drug delivery for asthma patients, the development of advanced solar cells and the study of the integrated behaviour of the soil-microbe system for sustainable agriculture.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100188
Funder
Australian Research Council
Funding Amount
$1,000,000.00
Summary
Epitaxial growth facility for advanced materials. An advanced materials fabrication facility accessible to all Australian researchers will be established. This will allow crystal growth at the atomic level for novel materials with applications including fundamental physics, nanocomposites, energy storage and conversion systems, and solar cells.
Controllable synthesis of multifunctional boron-based 2D materials. This project aims to make it possible to control the synthesis of boron-based two-dimensional (2D) materials with the desired following features in single or multiple aspects: thickness, composition, lateral sizes, porosity, surface area, and functionality. It intends to do so by designing and synthesising novel precursors, and by optimising the fabrication process of boron-based 2D nanosheets for different applications. The pro ....Controllable synthesis of multifunctional boron-based 2D materials. This project aims to make it possible to control the synthesis of boron-based two-dimensional (2D) materials with the desired following features in single or multiple aspects: thickness, composition, lateral sizes, porosity, surface area, and functionality. It intends to do so by designing and synthesising novel precursors, and by optimising the fabrication process of boron-based 2D nanosheets for different applications. The project will advance our fundamental knowledge in synthetic chemistry, materials chemistry, materials engineering and physics. It is expected to take us closer to unlocking the potential of boron-based 2D materials for real-world applications in, for example, energy storage and high-performance flexible electronics.Read moreRead less
Understanding the composite structures and properties of wild silk cocoons. This project will reveal the secret of wild silk cocoon structures, which are very thin and light in weight, yet they can protect wild silkworms in very harsh environments. This new knowledge will lead to the development of nature inspired materials and structures for personal protection.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100028
Funder
Australian Research Council
Funding Amount
$720,000.00
Summary
Ultra-high resolution and advanced analytical scanning electron microscope facility. This scanning electron microscope facility will form an essential part of characterising a broad range of material types, from nanometre sized particles through to cells and their interactions.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE180100090
Funder
Australian Research Council
Funding Amount
$1,136,244.00
Summary
Xe-plasma dual beam for advanced future materials. This project aims to establish a state of the art Xe-Plasma dual-beam facility providing characterisation and fabrication capabilities to Australia’s research community. The project will use two beams - one Xe, the other electrons - to mill the surface of bulk materials which are subsequently analysed by electron or ion beam techniques to determine atomic-scale microstructure(s) and compositions. Anticipated outcomes are advanced materials engin ....Xe-plasma dual beam for advanced future materials. This project aims to establish a state of the art Xe-Plasma dual-beam facility providing characterisation and fabrication capabilities to Australia’s research community. The project will use two beams - one Xe, the other electrons - to mill the surface of bulk materials which are subsequently analysed by electron or ion beam techniques to determine atomic-scale microstructure(s) and compositions. Anticipated outcomes are advanced materials engineering and new knowledge about ancient and future materials. This is expected to provide significant advances across a variety of fields including material science, engineering and geology and enhance trans-disciplinary collaborations.Read moreRead less
Multifunctional 2D materials for sustainable energy applications. This project seeks to explore the great potential of novel graphene-like two dimensional (2-D) materials for energy applications. 2-D materials, which possess atomic or molecular thickness and infinite planar lengths, are regarded as a building block for many applications due to their unique nanostructures, electronic and mechanical properties. This project is focused on the design and exploration of layered two-dimensional artifi ....Multifunctional 2D materials for sustainable energy applications. This project seeks to explore the great potential of novel graphene-like two dimensional (2-D) materials for energy applications. 2-D materials, which possess atomic or molecular thickness and infinite planar lengths, are regarded as a building block for many applications due to their unique nanostructures, electronic and mechanical properties. This project is focused on the design and exploration of layered two-dimensional artificial graphene and graphene analogues with ‘on-demand’ properties to exploit advanced energy applications. There is now a pressing need to integrate graphene sheets into multidimensional and multifunctional systems with spatially well-defined configurations, and integrated systems with a controllable structure and predictable performance. Project outcomes may lead to next-generation devices in energy storage and other applications.Read moreRead less
Bio-inspired two-dimensional nanomaterials for sustainable applications. This project aims to design multifunctional nanomaterials in the form of two-dimensional (2D) structures or architectures with targeted extraordinary bio-mimicking functions for sustainable development and energy applications by learning the best from nature. Millions of years of evolution and natural selection have turned the biological world into an effective materials-development laboratory. The project expects to enhanc ....Bio-inspired two-dimensional nanomaterials for sustainable applications. This project aims to design multifunctional nanomaterials in the form of two-dimensional (2D) structures or architectures with targeted extraordinary bio-mimicking functions for sustainable development and energy applications by learning the best from nature. Millions of years of evolution and natural selection have turned the biological world into an effective materials-development laboratory. The project expects to enhance research and innovation in materials science, nanotechnology, and biological science, and lead to advances in the chemical industry and sustainable environmental and energy applications in Australia. Read moreRead less
2D heterostructures with ultrafast interlayer transport for energy devices. This project aims to design novel 2D heterostructures with ultrafast interlayer transport properties and to modulate the associated optical, electric, catalytic, surface and storage properties by using a combination of experimental and computational approaches for sustainable energy applications, such as fuel generation and energy conversion and storage devices. This project expects to generate new knowledge in materials ....2D heterostructures with ultrafast interlayer transport for energy devices. This project aims to design novel 2D heterostructures with ultrafast interlayer transport properties and to modulate the associated optical, electric, catalytic, surface and storage properties by using a combination of experimental and computational approaches for sustainable energy applications, such as fuel generation and energy conversion and storage devices. This project expects to generate new knowledge in materials science and nanotechnology and make fundamental breakthroughs in new sustainable energy technologies. The outcomes of this project will facilitate the development of novel materials and low-cost sustainable energy in Australia with access to an enormous global market. Read moreRead less