Self-assembly and complexity: networks and patterns from materials to markets. Self-assembly leads the formation of patterns without external directing agents. It is responsible for the growth of complex multiscale structures found in biology and materials science and is a crucial concept for development of viable nanotechnologies. Complex systems, from biological ecosystems to financial markets and the Internet, are also characterized by spontaneous clustering and linkages that determine their ....Self-assembly and complexity: networks and patterns from materials to markets. Self-assembly leads the formation of patterns without external directing agents. It is responsible for the growth of complex multiscale structures found in biology and materials science and is a crucial concept for development of viable nanotechnologies. Complex systems, from biological ecosystems to financial markets and the Internet, are also characterized by spontaneous clustering and linkages that determine their collective behaviour. The project will investigate in detail the geometry, topology, materials science and statistical physics of networks, leading to design and characterization of robust self-assembled materials and complex systems.Read moreRead less
Characterization and design of new soft electrolyte materials. The use of fossil fuels for energy generation contributes heavily to global warming. The development of new types of energy sources (e.g. fuel cells) and energy storage devices (e.g. batteries) is of crucial importance to ease this pressure on the environment. The search for new, high energy-density electrolyte materials for these applications is intense. Recently, plastic crystal materials have been identified as potential electroly ....Characterization and design of new soft electrolyte materials. The use of fossil fuels for energy generation contributes heavily to global warming. The development of new types of energy sources (e.g. fuel cells) and energy storage devices (e.g. batteries) is of crucial importance to ease this pressure on the environment. The search for new, high energy-density electrolyte materials for these applications is intense. Recently, plastic crystal materials have been identified as potential electrolytes in a variety of electrochemical devices. These materials show high conductivity at ambient temperatures in their plastic (or soft) phase. This project aims to further investigate and develop these novel materials.Read moreRead less
De-consolidation and Re-consolidation of Advanced Thermoplastic Matrix Composites. The project provides a comprehensive physical understanding on thermal de-consolidation and re-consolidation processes in advanced thermoplastic composites during re-heating/cooling processes, such as thermoforming and joining. Mechanistic models based on theoretical analysis, experimental studies and computational modelling will be established to provide a unified approach to predict de-consolidation and re-conso ....De-consolidation and Re-consolidation of Advanced Thermoplastic Matrix Composites. The project provides a comprehensive physical understanding on thermal de-consolidation and re-consolidation processes in advanced thermoplastic composites during re-heating/cooling processes, such as thermoforming and joining. Mechanistic models based on theoretical analysis, experimental studies and computational modelling will be established to provide a unified approach to predict de-consolidation and re-consolidation processes. Optimum processing-windows will be established, with which the undesired deterioration in material meso-structures and mechanical performance due to de-consolidation is effectively minimised. The outcomes of the project will fill the gap in the knowledge for thermoplastic composite processing and will improve the integrity of thermoplastic composite structures in practical applications.Read moreRead less
Development of high-temperature superconducting coated conductors by pulsed-laser deposition technique for future long-length applications. The aim of the project is to develop a novel technology for manufacturing flexible coated conductors with the help of a pulsed laser deposition technique, in order to enhance the current-carrying ability of high-temperature superconducting coatings (including multi-layered coatings) for future long-length high power applications. To achieve desirable electr ....Development of high-temperature superconducting coated conductors by pulsed-laser deposition technique for future long-length applications. The aim of the project is to develop a novel technology for manufacturing flexible coated conductors with the help of a pulsed laser deposition technique, in order to enhance the current-carrying ability of high-temperature superconducting coatings (including multi-layered coatings) for future long-length high power applications. To achieve desirable electromagnetic properties governed by the nano-structures of the coatings, a well-balanced combination of world-class "global" and "local" electromagnetic property measurements with advanced structural characterisations is suggested. It is expected that a controlled network of nano-scale pinning centres will allow the development of high performance coated conductors.Read moreRead less
Some Outstanding Mechanics Problems in Layered Ferroelectromagnetic Composites with Enhanced Magnetoelectric Effect. The proposed research has high impact on both science and technology of ferroelectromagnetic materials. The outcomes will expand Australia's knowledge base and research capability in this emerging field. Relevant industries, such as smart materials and devices, can benefit from the results of this project. The theoretical, experimental and numerical results can be directly transfo ....Some Outstanding Mechanics Problems in Layered Ferroelectromagnetic Composites with Enhanced Magnetoelectric Effect. The proposed research has high impact on both science and technology of ferroelectromagnetic materials. The outcomes will expand Australia's knowledge base and research capability in this emerging field. Relevant industries, such as smart materials and devices, can benefit from the results of this project. The theoretical, experimental and numerical results can be directly transformed to design and application guidelines for the materials engineers and scientists to develop innovative and structurally/functionally reliable ferroelectromagnetic composites and their various devices and products.Read moreRead less
Investigation of a series of metallic sustrate materials suitable for developing long Y-Ba-Cu-O superconductors. Aims: Researchers from Institute for Superconducting and Electronic Materials, the University of Wollongong (UoW) & the Dept. Mat. Sci & Eng., University of Cincinnati (UC) in USA will build strong collaborations through joint research on a series of metallic substrate materials. Significance: The research work will contribute to the development of the second generation of high temper ....Investigation of a series of metallic sustrate materials suitable for developing long Y-Ba-Cu-O superconductors. Aims: Researchers from Institute for Superconducting and Electronic Materials, the University of Wollongong (UoW) & the Dept. Mat. Sci & Eng., University of Cincinnati (UC) in USA will build strong collaborations through joint research on a series of metallic substrate materials. Significance: The research work will contribute to the development of the second generation of high temperature superconducting wire technology. Expected outcomes: strengthen international research experience for junior researchers and develop new collaborations between senior researchers from UoW in Australia and UC in USA.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE0211003
Funder
Australian Research Council
Funding Amount
$125,000.00
Summary
A Facility for Probing Nanostructure in Polymers. The properties of a polymer are only partly determined by its molecular structure. It is now clear that the organization of molecular structure and phase morphology on a nano-scale has an equally important role in determining material behaviour. Increasingly this can be manipulated by judicious choice of formulation and processing variables. The polymer Nano-Structure Facility will bring together Australia's principal polymer experts in this a ....A Facility for Probing Nanostructure in Polymers. The properties of a polymer are only partly determined by its molecular structure. It is now clear that the organization of molecular structure and phase morphology on a nano-scale has an equally important role in determining material behaviour. Increasingly this can be manipulated by judicious choice of formulation and processing variables. The polymer Nano-Structure Facility will bring together Australia's principal polymer experts in this area of structure-property relations and provide them with shared access to the appropriate, modern analytical tools required to probe the nano-structure of such new materials with enhanced properties.Read moreRead less
Tailoring the optical properties of matter with Sol-Gel: innovative optical materials for 3D photonic crystals with complete photonic band-gap. The success of this project will allow for improvement of existing technologies in diverse fields, from optics to green energy production. Realization of 3D complete Photonic Band-Gap (PBG) structures is the first step toward full optic-based data processing systems, which will be one of the most revolutionary achievements in technology after introductio ....Tailoring the optical properties of matter with Sol-Gel: innovative optical materials for 3D photonic crystals with complete photonic band-gap. The success of this project will allow for improvement of existing technologies in diverse fields, from optics to green energy production. Realization of 3D complete Photonic Band-Gap (PBG) structures is the first step toward full optic-based data processing systems, which will be one of the most revolutionary achievements in technology after introduction of electronic-based processors. Improvement of energy conversion efficiency of existing solar cells and polymer-based solar cells will be achievable thanks to implementation of PhCs as high-reflective layers. The establishment of scaleable protocols for production of high quality materials for photonics will put Australia among the leading countries in the future photonic-devices market.Read moreRead less
Crack Propagation within Graded Interfaces. Functionally graded interfaces are a technologically new way of joining materials in a wide range of biomedical and industrial applications. The reduction in the interfacial stresses resulting from the graded interface increases the structural integrity of the component, however, existing models do not fully address issues of plasticity and cyclic fatigue to their fracture. The intention of this study is to investigate how modifications to the ductil ....Crack Propagation within Graded Interfaces. Functionally graded interfaces are a technologically new way of joining materials in a wide range of biomedical and industrial applications. The reduction in the interfacial stresses resulting from the graded interface increases the structural integrity of the component, however, existing models do not fully address issues of plasticity and cyclic fatigue to their fracture. The intention of this study is to investigate how modifications to the ductile reinforcement phase and how the cyclic loading influence crack extension within a graded interface. These results will assist in future design and prediction of the in-service lifetime of components containing gradient interfaces.Read moreRead less
Design Of Practical Passive Cooling Radiators Utilising Spectrally Selective Covers And Surfaces. Radiative cooling offers a means to cool buildings sustainably without complex and costly heat pumps or air conditioners. Units similar to solar panels can be designed with surfaces which radiate mostly into the 8 - 12 micron atmospheric window, which has a radiance much less than for other wavelengths. Commercial development has been limited by problems associated with the degradation, performance ....Design Of Practical Passive Cooling Radiators Utilising Spectrally Selective Covers And Surfaces. Radiative cooling offers a means to cool buildings sustainably without complex and costly heat pumps or air conditioners. Units similar to solar panels can be designed with surfaces which radiate mostly into the 8 - 12 micron atmospheric window, which has a radiance much less than for other wavelengths. Commercial development has been limited by problems associated with the degradation, performance or cost of radiator surfaces. This project seeks to improve both performance and durability with innovative use of alternative materials and sputtered coatings suitable for mass manufacture, and to test the outdoor performance of laboratory produced radiative plates.Read moreRead less