New nanolaminate ternary and quaternary alloy phases by thin film synthesis. The availability of suitable materials is a driver of new technologies. We will develop a new class of ternary and quaternary alloys with nanolaminate structures at the atomic scale using a combination of theoretical modeling, novel thin film synthesis and advanced characterization methods. The nanostructure of these materials is expected to promote a rare combination of metallic and ceramic like properties, such as low ....New nanolaminate ternary and quaternary alloy phases by thin film synthesis. The availability of suitable materials is a driver of new technologies. We will develop a new class of ternary and quaternary alloys with nanolaminate structures at the atomic scale using a combination of theoretical modeling, novel thin film synthesis and advanced characterization methods. The nanostructure of these materials is expected to promote a rare combination of metallic and ceramic like properties, such as low friction, high mechanical strength, resistance to heat shock, fracture, corrosion and oxidation, up to very high temperatures. Careful characterisation of the growth process and structure-property relationships will allow us to develop methods of tailoring the property mix for operation in harsh environments.Read moreRead less
Development of Novel Spin Caloritronic Materials and Devices for Heat Management in Nanoelectronic Systems. Spin caloritronics is a new field that combines concepts from spintronics and thermoelectricity. This project is inspired by spin Seebeck effect observed in magnetic insulators and motivated by the basic requirements of nanoscale heat management devices. Such devices are the key components promising to surmount fundamental limits of microelectronic technologies with heat dissipation and p ....Development of Novel Spin Caloritronic Materials and Devices for Heat Management in Nanoelectronic Systems. Spin caloritronics is a new field that combines concepts from spintronics and thermoelectricity. This project is inspired by spin Seebeck effect observed in magnetic insulators and motivated by the basic requirements of nanoscale heat management devices. Such devices are the key components promising to surmount fundamental limits of microelectronic technologies with heat dissipation and power consumption as the size of charge-based logic devices shrinks into nanometre scale. This program is aimed at experimental and theoretical development of novel spin caloritronic materials with spin Seebeck effect at ambient temperature, which is orders of magnitude higher than state-of-the-art materials, for heat management in nanoelectronic systems.Read moreRead less
Modification of optical properties of photocatalytic titania. The aim of the project is to capitalise on and optimise the recently discovered successful modification of the optical properties of titanium oxide (TiO2), such that efficient solar splitting of water is possible. TiO2 photocatalysts of adequate efficiency will be implemented as photoanodes in photoelectrochemical cells capable of large-scale production of hydrogen.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100223
Funder
Australian Research Council
Funding Amount
$340,000.00
Summary
Advanced X-ray diffraction facility for high energy and extreme conditions. X-ray powder diffraction is a powerful technique for determining the structure of matter at the atomic scale. This project will establish a new Australian capability for X-ray powder diffraction under extreme conditions that emulate real harsh service environments for advanced functional materials.
Enhanced pigment weathering resistance by coating with high dielectric ceramic. The partner company, Tiwest, based in Western Australia, is a major contributor to the economy, and earns more than $A400m annually in exports. It is the only company in the world that mines, separates, refines and manufactures titania products, including pigments, in one region. The current post-titania particle formation wet-coating process, however, presents a major capital and recurrent cost and necessitates a pi ....Enhanced pigment weathering resistance by coating with high dielectric ceramic. The partner company, Tiwest, based in Western Australia, is a major contributor to the economy, and earns more than $A400m annually in exports. It is the only company in the world that mines, separates, refines and manufactures titania products, including pigments, in one region. The current post-titania particle formation wet-coating process, however, presents a major capital and recurrent cost and necessitates a pigment regrind stage. The research will investigate the development of a highly durable dry-coated pigment utilising a novel high dielectric coating. This development has the potential to ensure the partner company's future competitiveness through reduced processing costs and improved product performance.Read moreRead less
Development of conductive buffer layers for RABiTS-based coated conductors. YBCO coated conductor has already been identified and developed as far as second generation HTS wire in power applications. Major advances have been made in the last 10 years in coated conductor development mainly in all aspects: substrate, buffer layer and YBCO layer. The research on conductive buffers layer will improve and expand the R&D on coated conductor in Australia. On the economic side, dramatic advantages and s ....Development of conductive buffer layers for RABiTS-based coated conductors. YBCO coated conductor has already been identified and developed as far as second generation HTS wire in power applications. Major advances have been made in the last 10 years in coated conductor development mainly in all aspects: substrate, buffer layer and YBCO layer. The research on conductive buffers layer will improve and expand the R&D on coated conductor in Australia. On the economic side, dramatic advantages and savings could be achieved if the coated conductors can be put to use. Superconductivity can have a significant role in deregulated electricity markets and in lessening CO2 emissions and other environmental impacts.Read moreRead less
Some Outstanding Mechanics Problems in Layered Ferroelectromagnetic Composites with Enhanced Magnetoelectric Effect. The proposed research has high impact on both science and technology of ferroelectromagnetic materials. The outcomes will expand Australia's knowledge base and research capability in this emerging field. Relevant industries, such as smart materials and devices, can benefit from the results of this project. The theoretical, experimental and numerical results can be directly transfo ....Some Outstanding Mechanics Problems in Layered Ferroelectromagnetic Composites with Enhanced Magnetoelectric Effect. The proposed research has high impact on both science and technology of ferroelectromagnetic materials. The outcomes will expand Australia's knowledge base and research capability in this emerging field. Relevant industries, such as smart materials and devices, can benefit from the results of this project. The theoretical, experimental and numerical results can be directly transformed to design and application guidelines for the materials engineers and scientists to develop innovative and structurally/functionally reliable ferroelectromagnetic composites and their various devices and products.Read moreRead less
Design of hollow nanoparticles of titania for the sustainable production of hydrogen from water using sunlight. Hydrogen is a clean and non-polluting fuel that is the natural and sustainable replacement for greenhouse gas emitting fossil fuels. Because of its abundant sunlight and vast titanium reserves (the world's largest) Australia is especially well-placed to develop the technology of producing hydrogen directly from water and sunlight using a titanium dioxide photo-anode. This research, whi ....Design of hollow nanoparticles of titania for the sustainable production of hydrogen from water using sunlight. Hydrogen is a clean and non-polluting fuel that is the natural and sustainable replacement for greenhouse gas emitting fossil fuels. Because of its abundant sunlight and vast titanium reserves (the world's largest) Australia is especially well-placed to develop the technology of producing hydrogen directly from water and sunlight using a titanium dioxide photo-anode. This research, which consists of computational and experimental parts, is focused on laying the scientific foundation for that technology to be commercially viable. The national and community benefits are the availability of an inexpensive, limitless and clean fuel, reduction in reliance on energy imports, reduction in greenhouse gas emissions and resultant global warming.Read moreRead less
Nano-Particle Suspension Behaviour in Salt Solutions: Effect of Ion Hydration and Attractive Forces. Understanding and controlling the flow behaviour of nano-particle suspensions is crucial to the processing of ceramics with nano-scale features. Interparticle forces influence the flow behaviour and depend upon the the adsorption of ions to the particle's surface. The proposed research investigates the effect of ion hydration and surface type on ion adsorption, the resulting attractive forces a ....Nano-Particle Suspension Behaviour in Salt Solutions: Effect of Ion Hydration and Attractive Forces. Understanding and controlling the flow behaviour of nano-particle suspensions is crucial to the processing of ceramics with nano-scale features. Interparticle forces influence the flow behaviour and depend upon the the adsorption of ions to the particle's surface. The proposed research investigates the effect of ion hydration and surface type on ion adsorption, the resulting attractive forces and suspension flow behaviour. The outcomes of the project have potential for significant increase in fundamental understanding of the relationship between ions, surfaces and forces. The benefits of this knowledge include producing nano-ceramics with improved properties and better understanding biopolymer behaviour.Read moreRead less
Synthesis of functionalised metal oxide beads with hierarchical pores for radionuclide and metal sequestration. The central aim of this project is to fabricate nanostructured materials to address the worldwide issue of nuclear waste. These novel materials, with tailored porosity and surface functionality, will decrease both radioactive waste volume and the potential for environmental risk. The collaboration between the Caruso group at the University of Melbourne and the Luca group at ANSTO will ....Synthesis of functionalised metal oxide beads with hierarchical pores for radionuclide and metal sequestration. The central aim of this project is to fabricate nanostructured materials to address the worldwide issue of nuclear waste. These novel materials, with tailored porosity and surface functionality, will decrease both radioactive waste volume and the potential for environmental risk. The collaboration between the Caruso group at the University of Melbourne and the Luca group at ANSTO will educate more scientists and students in the areas of nuclear science and engineering, and the environmental impact of nuclear power generators. Such expertise is currently in high demand around the world, thereby enhancing Australia's position in the global nuclear field.Read moreRead less