Controllable synthesis of multifunctional boron-based 2D materials. This project aims to make it possible to control the synthesis of boron-based two-dimensional (2D) materials with the desired following features in single or multiple aspects: thickness, composition, lateral sizes, porosity, surface area, and functionality. It intends to do so by designing and synthesising novel precursors, and by optimising the fabrication process of boron-based 2D nanosheets for different applications. The pro ....Controllable synthesis of multifunctional boron-based 2D materials. This project aims to make it possible to control the synthesis of boron-based two-dimensional (2D) materials with the desired following features in single or multiple aspects: thickness, composition, lateral sizes, porosity, surface area, and functionality. It intends to do so by designing and synthesising novel precursors, and by optimising the fabrication process of boron-based 2D nanosheets for different applications. The project will advance our fundamental knowledge in synthetic chemistry, materials chemistry, materials engineering and physics. It is expected to take us closer to unlocking the potential of boron-based 2D materials for real-world applications in, for example, energy storage and high-performance flexible electronics.Read moreRead less
Cold catalysis for water splitting. This project aims to develop photocatalysts via AC magnetic field through nanoscale heating for efficient H2 generation. This project is to introduce cold catalysis concept, which heats catalysts only but not solution, thus called cold catalysis, in the area of production of renewable energy. Expected outcome is the creation of clean and low cost catalysts to effectively harvest the chemical energy from the sun via splitting of water into H2 and O2 without cau ....Cold catalysis for water splitting. This project aims to develop photocatalysts via AC magnetic field through nanoscale heating for efficient H2 generation. This project is to introduce cold catalysis concept, which heats catalysts only but not solution, thus called cold catalysis, in the area of production of renewable energy. Expected outcome is the creation of clean and low cost catalysts to effectively harvest the chemical energy from the sun via splitting of water into H2 and O2 without causing any environmental damage. This unique technology will also help to address clean energy generation, which is in line with H2 economy plan by Australia government, and provide opportunities for new industries that will benefit Australian economy.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE170100137
Funder
Australian Research Council
Funding Amount
$358,275.00
Summary
Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental conc ....Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental concepts, and enable combinatorial search and new thin film technology. It is anticipated that this facility will increase Australia’s international competitiveness in the development of advanced energy materials.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100126
Funder
Australian Research Council
Funding Amount
$150,000.00
Summary
An integrated kinetic measurement system enabling efficient solar energy conversion. This measurement facility will underpin advances in the fundamental understanding of new semiconducting materials for high efficiency light-driven energy conversion systems. The outcomes of the research at the facility will lead to significant economic and environmental benefits for many industries, such as low cost solar cells and water purifications.
CO2 Utilisation for Energy Storage. This project aims to develop a novel technology that can convert carbon dioxide into useful products while storing intermittent renewable energy as green stable chemical energy. The project plans to focus on the development of a robust cathode for the conversion of carbon dioxide with optimum physical and chemical structure to achieve long-term stable performance. This technology would make a significant contribution to increasing the proportion of renewable e ....CO2 Utilisation for Energy Storage. This project aims to develop a novel technology that can convert carbon dioxide into useful products while storing intermittent renewable energy as green stable chemical energy. The project plans to focus on the development of a robust cathode for the conversion of carbon dioxide with optimum physical and chemical structure to achieve long-term stable performance. This technology would make a significant contribution to increasing the proportion of renewable energy in our energy supply and reducing our carbon dioxide emissions.Read moreRead less
Integrated composite electrodes for electrochemical synthesis of ammonia. This project aims to develop multifunctional composite electrodes for electrochemical synthesis of ammonia from water, nitrogen gas and renewable energy under ambient conditions. Hydrophobic subnanometre water channels will be integrated with an electrocatalyst to control supply of water as vapour, thereby effectively minimising hydrogen evolution reaction and enabling high-efficiency ammonia synthesis. Expected outcomes i ....Integrated composite electrodes for electrochemical synthesis of ammonia. This project aims to develop multifunctional composite electrodes for electrochemical synthesis of ammonia from water, nitrogen gas and renewable energy under ambient conditions. Hydrophobic subnanometre water channels will be integrated with an electrocatalyst to control supply of water as vapour, thereby effectively minimising hydrogen evolution reaction and enabling high-efficiency ammonia synthesis. Expected outcomes include enhanced capacity in developing electrochemical reaction systems, and new fundamental knowledge of electrocatalyst design and reaction engineering. This should provide significant economic and environmental benefits by developing a sustainable manufacturing technology to transform the century-old ammonia industry.Read moreRead less
Nanoscale heating towards high efficient nitrogen reduction reduction. This project aims to develop nanoscale heating technique using AC magnetic field for efficient synthesis of ammonia, widely used for fertiliser and having potential for hydrogen storage. This project is to introduce nanoscale heating concept by heating catalyst only but not solution in electrochemical catalysis to achieve high catalytic activity. Expected outcome is the creation of low cost catalysts having high selectivity a ....Nanoscale heating towards high efficient nitrogen reduction reduction. This project aims to develop nanoscale heating technique using AC magnetic field for efficient synthesis of ammonia, widely used for fertiliser and having potential for hydrogen storage. This project is to introduce nanoscale heating concept by heating catalyst only but not solution in electrochemical catalysis to achieve high catalytic activity. Expected outcome is the creation of low cost catalysts having high selectivity and formation rate for ammonia production. This unique technology has the potential to replace current ammonia production based on Haber-Bosch process, which consumes 2% of world energy and contributes 3% of overall CO2 emission. The project provides opportunities for new industries that will benefit Australian economy.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100098
Funder
Australian Research Council
Funding Amount
$230,000.00
Summary
A comprehensive gas/vapour sorption facility for the fast advancement of decarbonised energy technologies. Solutions to clean energy production, storage and use are critical to Australia’s prosperity, yet there is a significant lack of targeted research facilities for the development of the highly needed materials and technologies for powering a sustainable Australia. This facility will bring research efforts closer to practical solutions.
Linkage Infrastructure, Equipment And Facilities - Grant ID: Le170100137
Funder
Australian Research Council
Summary
Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental conc ....Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental concepts, and enable combinatorial search and new thin film technology. It is anticipated that this facility will increase Australia’s international competitiveness in the development of advanced energy materials.Read moreRead less
Metal-support interactions: single atoms Vs nanoclusters. This project aims to fundamentally understand the catalytic mechanism at an atomic level through metal-metal and metal-metal/support interactions. The optimised configuration of active sites for a specific reaction is consequently identified, providing the design principles of novel catalysts. The precisely control of synthesis for such active sites and assembly of the target active sites into a catalyst will deliver a completely new meth ....Metal-support interactions: single atoms Vs nanoclusters. This project aims to fundamentally understand the catalytic mechanism at an atomic level through metal-metal and metal-metal/support interactions. The optimised configuration of active sites for a specific reaction is consequently identified, providing the design principles of novel catalysts. The precisely control of synthesis for such active sites and assembly of the target active sites into a catalyst will deliver a completely new methodology for catalyst development. The expected outcomes from this project include new science and knowledge of Chemistry, new design philosophy and strategies for catalysts, and the highly efficient catalysts for electrocatalytic reactions, benefiting Australian renewable energy research and industry.Read moreRead less