Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100188
Funder
Australian Research Council
Funding Amount
$1,000,000.00
Summary
Epitaxial growth facility for advanced materials. An advanced materials fabrication facility accessible to all Australian researchers will be established. This will allow crystal growth at the atomic level for novel materials with applications including fundamental physics, nanocomposites, energy storage and conversion systems, and solar cells.
Nanoporous siloxane membranes for ultrasound mediated ophthalmic drug delivery. This project will develop tailored polymers for use in a novel non-invasive ocular drug delivery device which treats vision threatening conditions such as age-related macular degeneration (AMD). The outcomes of this project will enable an entirely new ocular drug delivery technology, thereby delivering significant benefit to ophthalmic healthcare.
Guided droplet deposition: Microfabrication of advanced materials. The progress of micro and nanofabrication is opening an array of new opportunities with a new degree of freedom for manufacturing. This process will complement the existing micromanufacturing facilities in Melbourne. While metal printing and deposition of polymers is presently available, the guided droplet deposition will extend current capabilities to include ceramics and high melting temperature metals. Direct application to me ....Guided droplet deposition: Microfabrication of advanced materials. The progress of micro and nanofabrication is opening an array of new opportunities with a new degree of freedom for manufacturing. This process will complement the existing micromanufacturing facilities in Melbourne. While metal printing and deposition of polymers is presently available, the guided droplet deposition will extend current capabilities to include ceramics and high melting temperature metals. Direct application to medical devices will provide a more effective surface for improved performance and allow the incorporation of smart and sensor materials for multifunctional devices. Read moreRead less
Stronger zinc alloys for more flexible biodegradable stents. This project aims to develop stronger zinc alloys for a new class of biodegradable metallic stents. A key challenge for biodegradable stent technology is to make stents as thin as possible while also being strong. This project will develop ultra-high strength zinc alloys that can be used to fabricate thinner biodegradable stents for easier surgical operation. The project outcomes should be a major step in the design and development of ....Stronger zinc alloys for more flexible biodegradable stents. This project aims to develop stronger zinc alloys for a new class of biodegradable metallic stents. A key challenge for biodegradable stent technology is to make stents as thin as possible while also being strong. This project will develop ultra-high strength zinc alloys that can be used to fabricate thinner biodegradable stents for easier surgical operation. The project outcomes should be a major step in the design and development of a new generation of biodegradable stents that will avoid the risks associated with existing products and potentially create a better life for millions of patients worldwide.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE140100012
Funder
Australian Research Council
Funding Amount
$890,000.00
Summary
Dual Column-Focused Ion Beam/Scanning Electron Microscope facility for Queensland. Dual column focused ion beam/scanning electron microscope facility: This facility will precisely cut specimens and surfaces that can be imaged in a variety of ways, including crystallographic and elemental space, of particular use for physical scientists, as well as biological specimens. This instrument will provide information at resolutions between optical and transmission electron microscopy, images that will ....Dual Column-Focused Ion Beam/Scanning Electron Microscope facility for Queensland. Dual column focused ion beam/scanning electron microscope facility: This facility will precisely cut specimens and surfaces that can be imaged in a variety of ways, including crystallographic and elemental space, of particular use for physical scientists, as well as biological specimens. This instrument will provide information at resolutions between optical and transmission electron microscopy, images that will effectively provide the biologist with the ability to develop the complete correlative picture of organelles and cells. The instrument will also provide a much needed resource for researchers across disciplines such as physics, chemistry, biology, geology and engineering.Read moreRead less
Bioactive Polymers for Wound Healing Applications. VitroGroR is a growth factor complex which enhances cell growth and migration, and hence has great potential for treating wounds. Tissue Therapies, which holds the rights to commercialization of VitroGroR, is seeking to develop methods of delivering VitroGroR in its active form to the wound environment. Two solutions to this problem will be developed in this project; a bioactive bandage containing a novel combination of microspheres and a hydrog ....Bioactive Polymers for Wound Healing Applications. VitroGroR is a growth factor complex which enhances cell growth and migration, and hence has great potential for treating wounds. Tissue Therapies, which holds the rights to commercialization of VitroGroR, is seeking to develop methods of delivering VitroGroR in its active form to the wound environment. Two solutions to this problem will be developed in this project; a bioactive bandage containing a novel combination of microspheres and a hydrogel matrix, and secondly an in-situ polymerisable matrix for treatment of deep wounds. The growth factor complex will be protected from aggressive proteases through encapsulation within microspheres, and the use of MMP-inhibiting comonomers.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100028
Funder
Australian Research Council
Funding Amount
$720,000.00
Summary
Ultra-high resolution and advanced analytical scanning electron microscope facility. This scanning electron microscope facility will form an essential part of characterising a broad range of material types, from nanometre sized particles through to cells and their interactions.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100036
Funder
Australian Research Council
Funding Amount
$440,000.00
Summary
National in-situ transmission electron microscope facilities. This project will establish six complementary transmission electron microscope (TEM) facilities at various locations. The establishment of the facilities will be a key step in developing advanced capacity in Australia and will support ground-breaking research in diverse material systems for various high-performing applications, including electronics, optoelectronics, light metals, biomaterials, energy, and environment.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE0346882
Funder
Australian Research Council
Funding Amount
$296,000.00
Summary
A Micro-CT facility for non-destructive 3D X-ray microscopy of opaque materials. This project will establish a Micro-CT facility for non-destructive 3D X-ray microscopy of the internal structure of materials. The facility will support research from a broad spectrum of disciplines and extend regional microscopy and microanalysis capabilities. With a resolution of 1.8µm this instrument will provide 3D images with virtually no sample preparation. The range of materials that this applies to includes ....A Micro-CT facility for non-destructive 3D X-ray microscopy of opaque materials. This project will establish a Micro-CT facility for non-destructive 3D X-ray microscopy of the internal structure of materials. The facility will support research from a broad spectrum of disciplines and extend regional microscopy and microanalysis capabilities. With a resolution of 1.8µm this instrument will provide 3D images with virtually no sample preparation. The range of materials that this applies to includes minerals, wood, biomaterials, polymers, composites, archaeological ceramics and mummified tissue, and biological materials such as bone, teeth and coral. This facilitates research which had been considered too difficult because of the sample preparation needed to examine internal structure.
Read moreRead less
A novel approach to the design and fabrication of biomimetic and biocompatible Ti-Ta implants by additive manufacturing. A large number of the Australian population suffer various types of bone issues arising from either age-related degenerative bone problems or injuries from accidents, sports and other activities. As the number of joint replacements performed in Australia increases, it is important to reduce the rate of implant failure. This project aims to address this critical issue by combin ....A novel approach to the design and fabrication of biomimetic and biocompatible Ti-Ta implants by additive manufacturing. A large number of the Australian population suffer various types of bone issues arising from either age-related degenerative bone problems or injuries from accidents, sports and other activities. As the number of joint replacements performed in Australia increases, it is important to reduce the rate of implant failure. This project aims to address this critical issue by combining unique multi-scale structural design, alloy development, 3D printing, modelling and tissue engineering to develop bone-like biomimetic titanium implants with superior structural, mechanical and biological compatibility with bone. The outcomes aim to contribute to both healthcare and manufacturing industries, as well as improving the quality of life for Australians.Read moreRead less