Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100099
Funder
Australian Research Council
Funding Amount
$290,000.00
Summary
A complete near-field scanning optical microscope for advanced characterisation of novel and functional materials. This near-field optical scanning microscope will be unique in Australia and will substantially enhance national research capabilities in functional materials, nanotechnology, biotechnology and chemistry. It will create a platform to advance Australian research to new levels in pharmaceuticals, nanomaterials and energy storage materials.
Enhanced pigment weathering resistance by coating with high dielectric ceramic. The partner company, Tiwest, based in Western Australia, is a major contributor to the economy, and earns more than $A400m annually in exports. It is the only company in the world that mines, separates, refines and manufactures titania products, including pigments, in one region. The current post-titania particle formation wet-coating process, however, presents a major capital and recurrent cost and necessitates a pi ....Enhanced pigment weathering resistance by coating with high dielectric ceramic. The partner company, Tiwest, based in Western Australia, is a major contributor to the economy, and earns more than $A400m annually in exports. It is the only company in the world that mines, separates, refines and manufactures titania products, including pigments, in one region. The current post-titania particle formation wet-coating process, however, presents a major capital and recurrent cost and necessitates a pigment regrind stage. The research will investigate the development of a highly durable dry-coated pigment utilising a novel high dielectric coating. This development has the potential to ensure the partner company's future competitiveness through reduced processing costs and improved product performance.Read moreRead less
Defect generation in hetero-epitaxy on lattice mismatched substrates. High quality lattice mismatched semiconductor heterostructures are core enabling technologies for next generation electronic and optoelectronic devices with new functions and features such as monolithic integration, lower production costs, larger wafer size, and better system robustness. This project will generate new science on defect generation in lattice mismatched hetero-epitaxy with the aim of developing novel strategies ....Defect generation in hetero-epitaxy on lattice mismatched substrates. High quality lattice mismatched semiconductor heterostructures are core enabling technologies for next generation electronic and optoelectronic devices with new functions and features such as monolithic integration, lower production costs, larger wafer size, and better system robustness. This project will generate new science on defect generation in lattice mismatched hetero-epitaxy with the aim of developing novel strategies for their minimisation. The direct outcome will be higher quality HgCdTe materials on lattice mismatched Si or III-V substrates with defect density low enough for fabricating high performance mid-wave and long-wave infrared arrays with features of lower cost, larger array format size, and higher operating temperature.Read moreRead less
Development of a novel and practical method for fabricating carbon nanotube reinforced polymer composites for automotive applications. An effective, economical and environmentally friendly technology will be developed by this project to fabricate carbon nanotube reinforced polymer composites. The thus obtained products will be applied as automotive parts.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100069
Funder
Australian Research Council
Funding Amount
$200,000.00
Summary
A complete thermo-electric characterisation facility for exploration of novel materials and devices at high temperatures. This high temperature materials’ characterisation facility will be the most advanced measurement setup of its kind in Australia. The unique features of the equipment and its high versatility will substantially enhance national research capabilities in functional materials, metal engineering, manufacturing engineering, chemistry, and physics.
Industrial Transformation Training Centres - Grant ID: IC180100049
Funder
Australian Research Council
Funding Amount
$4,380,454.00
Summary
ARC Training Centre for Future Energy Storage Technologies. The ARC Training Centre for Future Energy Storage Technologies aims to equip the next generation of researchers and the energy technology workforce with the skills needed to drive innovation, exploration and investigation so we safeguard our workers and industries. The Centre aims to challenge existing thinking and expand Australia’s capacity in energy storage and production. The Centre expects to create new knowledge and intellectual p ....ARC Training Centre for Future Energy Storage Technologies. The ARC Training Centre for Future Energy Storage Technologies aims to equip the next generation of researchers and the energy technology workforce with the skills needed to drive innovation, exploration and investigation so we safeguard our workers and industries. The Centre aims to challenge existing thinking and expand Australia’s capacity in energy storage and production. The Centre expects to create new knowledge and intellectual property in advanced energy materials, batteries and battery-control systems for integration into end user industries. This Centre will facilitate small to medium-sized enterprises to take a global leadership role in advancing and producing new age storage technologies. By harnessing the expertise of researchers and industry partners the Centre aims to deliver benefit to our economy, the community and the environment.
Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE140100012
Funder
Australian Research Council
Funding Amount
$890,000.00
Summary
Dual Column-Focused Ion Beam/Scanning Electron Microscope facility for Queensland. Dual column focused ion beam/scanning electron microscope facility: This facility will precisely cut specimens and surfaces that can be imaged in a variety of ways, including crystallographic and elemental space, of particular use for physical scientists, as well as biological specimens. This instrument will provide information at resolutions between optical and transmission electron microscopy, images that will ....Dual Column-Focused Ion Beam/Scanning Electron Microscope facility for Queensland. Dual column focused ion beam/scanning electron microscope facility: This facility will precisely cut specimens and surfaces that can be imaged in a variety of ways, including crystallographic and elemental space, of particular use for physical scientists, as well as biological specimens. This instrument will provide information at resolutions between optical and transmission electron microscopy, images that will effectively provide the biologist with the ability to develop the complete correlative picture of organelles and cells. The instrument will also provide a much needed resource for researchers across disciplines such as physics, chemistry, biology, geology and engineering.Read moreRead less
Porous beta-titanium bone implants optimised for strength and bio-compatibility: design and fabrication. The project aims to develop the scaffold-design and manufacturing techniques that will underpin the next generation of bone implants. The scaffolds will be specifically designed to match the key biomechanical properties of bone, and fabricated from novel titanium alloys using the latest generation of advanced manufacturing technologies.
Industrial Transformation Training Centres - Grant ID: IC210100023
Funder
Australian Research Council
Funding Amount
$4,943,949.00
Summary
ARC Training Centre in Bioplastics and Biocomposites. There is unprecedented growth in demand for bioderived and biodegradable materials. This Training Centre in Bioplastics and Biocomposites will capitalise on Australia’s abundance of the requisite natural bioresources to drive advances in technology for the development of bioplastic and biocomposite products for the new bioeconomy. The aim is to deliver leading edge research with a holistic focus on technical, social, policy and end of life so ....ARC Training Centre in Bioplastics and Biocomposites. There is unprecedented growth in demand for bioderived and biodegradable materials. This Training Centre in Bioplastics and Biocomposites will capitalise on Australia’s abundance of the requisite natural bioresources to drive advances in technology for the development of bioplastic and biocomposite products for the new bioeconomy. The aim is to deliver leading edge research with a holistic focus on technical, social, policy and end of life solutions, training a cohort of industry ready research specialists to underpin Australia’s transition to a globally significant bioplastics and biocomposites industry, while at the same time laying the foundations for accelerated growth in this space.Read moreRead less