ARC Research Network for Advanced Materials. Materials science/engineering is decidedly interdisciplinary, covering all science and impacting on all manufacturing industry. This network will promote interactions that do not usually occur between materials researchers and students across Australia and internationally from diverse disciplines. The scope is broadly based on advanced materials production, processing and properties but focused in four areas, involving: i) innovative structural/functi ....ARC Research Network for Advanced Materials. Materials science/engineering is decidedly interdisciplinary, covering all science and impacting on all manufacturing industry. This network will promote interactions that do not usually occur between materials researchers and students across Australia and internationally from diverse disciplines. The scope is broadly based on advanced materials production, processing and properties but focused in four areas, involving: i) innovative structural/functional materials, ii) high-tech IT/communications/sensing materials, iii) materials solutions for manufacturing, iv) materials for a sustainable Australia, and v) emerging materials technologies. Key programs will promote interdisciplinary workshops and early career researcher interactions.Read moreRead less
New materials for manipulating intracellular communication. This project aims to identify new techniques for incorporating cell-signalling triggers into macromolecules, therefore enabling the development of next-generation stimuli-responsive nanoparticles that can emit signalling molecules on demand. Harnessing nanomaterials to stimulate specific sub-cellular processes is a neglected area in nanotechnology research. These nanoparticles could potentially be used to deliver signalling molecules fo ....New materials for manipulating intracellular communication. This project aims to identify new techniques for incorporating cell-signalling triggers into macromolecules, therefore enabling the development of next-generation stimuli-responsive nanoparticles that can emit signalling molecules on demand. Harnessing nanomaterials to stimulate specific sub-cellular processes is a neglected area in nanotechnology research. These nanoparticles could potentially be used to deliver signalling molecules for agricultural, pharmaceutical and veterinary applications. The project is expected to develop a new suite of materials that could ultimately be used to improve the yield of important commercial crops, or revitalise the use of medicines limited by their poor side effect profile.Read moreRead less
Advanced high strength steels produced by energy efficient direct strip casting. Over one billion tonnes of steel is produced every year and one method of reducing the environmental footprint of this production is through strip casting. This process reduces the energy required to process liquid steel into thin sheet product by an astounding 90 per cent. This proposal aims to expand the application of this technology to new steel grades.
Development of SmCo-based High Temperature Permanent Magnets: Microstructure and Coercivity Mechanism. This project is to develop high performance permanent magnets for elevated temperature applications. Microstructure and magnetic properties will be examined using atom probe, TEM, XRD and magnetometry. The specific atom probe is the state-of-the-art technique for the characterization of nanostructure and falls in the designated National Research Priority 3, PG2 Frontier Technologies (nanotechno ....Development of SmCo-based High Temperature Permanent Magnets: Microstructure and Coercivity Mechanism. This project is to develop high performance permanent magnets for elevated temperature applications. Microstructure and magnetic properties will be examined using atom probe, TEM, XRD and magnetometry. The specific atom probe is the state-of-the-art technique for the characterization of nanostructure and falls in the designated National Research Priority 3, PG2 Frontier Technologies (nanotechnology). The magnet alloys concerned are an example of Advanced Materials (NRP3, PG3), possessing the best performance amongst such functional materials. The expertise gained in the use of the atom probe technique in this project will have broader applications in the study of nanostructured materials and other metal alloy problems within Australia.Read moreRead less
Multifunctional Three-Dimensional Non-Crimp Fibre Preforms for Polymer Composites: Innovative High-Value Products for the Australian Textiles Industry. This project aims to develop a new three-dimensional (3D) weaving technology for fabricating multi-functional fabrics for advanced fibre-reinforced composites. 3D woven fabrics with low fibre waviness for high structural performance, integrally woven optical fibre sensors for loads monitoring and damage detection, and woven thermoplastic filament ....Multifunctional Three-Dimensional Non-Crimp Fibre Preforms for Polymer Composites: Innovative High-Value Products for the Australian Textiles Industry. This project aims to develop a new three-dimensional (3D) weaving technology for fabricating multi-functional fabrics for advanced fibre-reinforced composites. 3D woven fabrics with low fibre waviness for high structural performance, integrally woven optical fibre sensors for loads monitoring and damage detection, and woven thermoplastic filaments for self-healing aim to meet the emerging demands of industry for light-weight high-performance composites. This new technology aims to deliver to the Australian textiles and clothing industry a new capability in manufacturing carbon-fibre based fabrics as reinforcements in advanced composites, thus helping reinvigorate and realign an important Australian industry sector.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: Le110100094
Funder
Australian Research Council
Summary
Selective laser melting - an advanced manufacturing and physical modelling technology for the digital age. Selective laser melting is a new manufacturing technology that creates parts layer by layer directly from a computer model, eliminating the need for tooling or machining. This technology will be applied to a diverse range of research areas from producing the next generation of medical implants and devices to improving our understanding of geo-materials.
Unravelling structure-function relationships in high mobility donor-acceptor co-polymers. This project seeks to understand the high-performance of a new generation of semiconducting plastics. This research will enable the development of low-cost printed electronics such as flexible displays and sensors.
A Novel Approach to Polymer/Nanosheet Composites and Their Fundamentals. Multifunctional Polymer/nanosheet composites have not yet been widely scaled up in polymer processing and composite industries mainly due to cost and inhaling hazard. This project proposes a novel methodology which embeds nanosheet preparation within polymer melt to both remove the inhaling hazard and lower the cost; the key is to develop two groups of nanosheet intercalation compounds which can expand at the polymer proces ....A Novel Approach to Polymer/Nanosheet Composites and Their Fundamentals. Multifunctional Polymer/nanosheet composites have not yet been widely scaled up in polymer processing and composite industries mainly due to cost and inhaling hazard. This project proposes a novel methodology which embeds nanosheet preparation within polymer melt to both remove the inhaling hazard and lower the cost; the key is to develop two groups of nanosheet intercalation compounds which can expand at the polymer processing temperature, to exfoliate and disperse nanosheets in polymers. It is expected to generate new knowledge of the structure-property relationships and fracture mechanisms of these composites, for industry to scale up this technology and to develop new product.Read moreRead less
Low cost solution-processable 2D nanomaterials for smart windows. This project aims to develop low cost and scalable synthesis of the active functional nanomaterials in smart windows, their facile application techniques, and their integration into the glass manufacturing process. Smart windows, with thermochromic and electrochromic functionalities, will play important roles towards efficient energy usage and conservation (in terms of air-conditioning and lighting) in most buildings including off ....Low cost solution-processable 2D nanomaterials for smart windows. This project aims to develop low cost and scalable synthesis of the active functional nanomaterials in smart windows, their facile application techniques, and their integration into the glass manufacturing process. Smart windows, with thermochromic and electrochromic functionalities, will play important roles towards efficient energy usage and conservation (in terms of air-conditioning and lighting) in most buildings including offices, schools, and residential homes. . The intended outcome of this project is to facilitate the commercialisation of low-cost, energy-saving smart windows for efficient energy usage and conservation, which is an integral part of a sustainable environment.Read moreRead less
Development of ultrafine Grained Steels. This project will develop new methods to produce steels with much finer microstructures, and investigate how these microstructures form. This will markedly increase the strength and toughness of these steels, which is particularly required for the pipeline, off shore platform and large construction industries. The method to be used involves controlling the hot deformation of the steel and control of the phase transformation during or after deformation. ....Development of ultrafine Grained Steels. This project will develop new methods to produce steels with much finer microstructures, and investigate how these microstructures form. This will markedly increase the strength and toughness of these steels, which is particularly required for the pipeline, off shore platform and large construction industries. The method to be used involves controlling the hot deformation of the steel and control of the phase transformation during or after deformation. Current work has shown that it is possible to reduce the grain size from 5 to 1microns using quite simple methods.Read moreRead less