Materials Engineering Solutions for Tomorrow's Water Resources. This proposal concerns the development of advanced technologies informed by knowledge management systems to ensure the continued provision of high-quality drinking water to Australian. This is particularly important as we see the impacts from climate change and extreme weather variability with catastrophic consequences such as recently seen in Victoria and in Queensland on water catchments and water quality and supply. The challenge ....Materials Engineering Solutions for Tomorrow's Water Resources. This proposal concerns the development of advanced technologies informed by knowledge management systems to ensure the continued provision of high-quality drinking water to Australian. This is particularly important as we see the impacts from climate change and extreme weather variability with catastrophic consequences such as recently seen in Victoria and in Queensland on water catchments and water quality and supply. The challenges of adequate water resourcing, both in quantity and quality, for Australians who wish to lead healthy and productive lives are serious and require collaboration between industry, government and research providers such as is proposed here. Read moreRead less
A Novel Approach to Polymer/Nanosheet Composites and Their Fundamentals. Multifunctional Polymer/nanosheet composites have not yet been widely scaled up in polymer processing and composite industries mainly due to cost and inhaling hazard. This project proposes a novel methodology which embeds nanosheet preparation within polymer melt to both remove the inhaling hazard and lower the cost; the key is to develop two groups of nanosheet intercalation compounds which can expand at the polymer proces ....A Novel Approach to Polymer/Nanosheet Composites and Their Fundamentals. Multifunctional Polymer/nanosheet composites have not yet been widely scaled up in polymer processing and composite industries mainly due to cost and inhaling hazard. This project proposes a novel methodology which embeds nanosheet preparation within polymer melt to both remove the inhaling hazard and lower the cost; the key is to develop two groups of nanosheet intercalation compounds which can expand at the polymer processing temperature, to exfoliate and disperse nanosheets in polymers. It is expected to generate new knowledge of the structure-property relationships and fracture mechanisms of these composites, for industry to scale up this technology and to develop new product.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE140100042
Funder
Australian Research Council
Funding Amount
$190,000.00
Summary
UV to mid-infrared fluorescence spectrometer for use in mineral analysis, radiation dosimetry, and laser materials characterisation. Ultraviolet to mid-infrared fluorescence spectrometer for use in mineral analysis, radiation dosimetry and laser materials characterisation: This project will provide equipment with a vast capability to collect ultraviolet to mid-infrared fluorescence with high temporal measurement accuracy, and highly flexible excitation (spectral and temporal). This will enhance ....UV to mid-infrared fluorescence spectrometer for use in mineral analysis, radiation dosimetry, and laser materials characterisation. Ultraviolet to mid-infrared fluorescence spectrometer for use in mineral analysis, radiation dosimetry and laser materials characterisation: This project will provide equipment with a vast capability to collect ultraviolet to mid-infrared fluorescence with high temporal measurement accuracy, and highly flexible excitation (spectral and temporal). This will enhance active research into new glasses and laser crystals, probing of defect states resulting from ionising radiation absorption in environmental and medical dosimetry materials, investigation of novel fluorescence techniques for mineral identification, through to improving chemical detection capability (for example, detection of explosives). The instrument comprises modules that enable excitation in the ultraviolet, visible, and infrared from a tunable laser system, and high-efficiency collection and processing of fluorescence spectra.Read moreRead less
Enhanced pigment weathering resistance by coating with high dielectric ceramic. The partner company, Tiwest, based in Western Australia, is a major contributor to the economy, and earns more than $A400m annually in exports. It is the only company in the world that mines, separates, refines and manufactures titania products, including pigments, in one region. The current post-titania particle formation wet-coating process, however, presents a major capital and recurrent cost and necessitates a pi ....Enhanced pigment weathering resistance by coating with high dielectric ceramic. The partner company, Tiwest, based in Western Australia, is a major contributor to the economy, and earns more than $A400m annually in exports. It is the only company in the world that mines, separates, refines and manufactures titania products, including pigments, in one region. The current post-titania particle formation wet-coating process, however, presents a major capital and recurrent cost and necessitates a pigment regrind stage. The research will investigate the development of a highly durable dry-coated pigment utilising a novel high dielectric coating. This development has the potential to ensure the partner company's future competitiveness through reduced processing costs and improved product performance.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE100100149
Funder
Australian Research Council
Funding Amount
$500,000.00
Summary
Spectroscopic imaging for materials, minerals and life sciences. The spectroscopic imaging equipment highlighted in this proposal will produce a number of outcomes of national benefit. First, it will elevate the impact of research in materials, minerals, and life sciences in Australia, all of which are key areas for the national economy and community. Second, the equipment will be integral to the teaching and research nexus and experiential learning facility for a new wave of materials science ....Spectroscopic imaging for materials, minerals and life sciences. The spectroscopic imaging equipment highlighted in this proposal will produce a number of outcomes of national benefit. First, it will elevate the impact of research in materials, minerals, and life sciences in Australia, all of which are key areas for the national economy and community. Second, the equipment will be integral to the teaching and research nexus and experiential learning facility for a new wave of materials science and engineering students to be educated at UniSA in the EIF-funded M2 building at Mawson Lakes. Finally, the anticipated outcomes of the research to be supported are significant and relate clearly to a number of National Research Priorities.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE170100137
Funder
Australian Research Council
Funding Amount
$358,275.00
Summary
Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental conc ....Integrated thin film facility for catalysis and energy materials research. This project aims to establish thin film fabrication with catalytic/gas sorption characterisation needed for energy research. This project will overcome current limitations in advanced energy materials design via wet chemical methods. It will enable materials synthesis and characterisation toward thermal/photo/electro-catalytic, hydrogen storage, and battery technologies. The facility is expected to drive fundamental concepts, and enable combinatorial search and new thin film technology. It is anticipated that this facility will increase Australia’s international competitiveness in the development of advanced energy materials.Read moreRead less
Industrial Transformation Training Centres - Grant ID: IC180100049
Funder
Australian Research Council
Funding Amount
$4,380,454.00
Summary
ARC Training Centre for Future Energy Storage Technologies. The ARC Training Centre for Future Energy Storage Technologies aims to equip the next generation of researchers and the energy technology workforce with the skills needed to drive innovation, exploration and investigation so we safeguard our workers and industries. The Centre aims to challenge existing thinking and expand Australia’s capacity in energy storage and production. The Centre expects to create new knowledge and intellectual p ....ARC Training Centre for Future Energy Storage Technologies. The ARC Training Centre for Future Energy Storage Technologies aims to equip the next generation of researchers and the energy technology workforce with the skills needed to drive innovation, exploration and investigation so we safeguard our workers and industries. The Centre aims to challenge existing thinking and expand Australia’s capacity in energy storage and production. The Centre expects to create new knowledge and intellectual property in advanced energy materials, batteries and battery-control systems for integration into end user industries. This Centre will facilitate small to medium-sized enterprises to take a global leadership role in advancing and producing new age storage technologies. By harnessing the expertise of researchers and industry partners the Centre aims to deliver benefit to our economy, the community and the environment.
Read moreRead less
Novel plastics using renewable signal chemistry to remove bacteria in water. This project plans to develop synthetic plastic surfaces that continuously generate nitric oxide to deter the formation of biofilms. Plastic surfaces exposed to aqueous environments rapidly become covered by a film of bacteria, which can cause infection. Trace levels of generated nitric oxide can combat this problem by breaking up existing bacterial biofilms. Current research has developed plastics that continuously gen ....Novel plastics using renewable signal chemistry to remove bacteria in water. This project plans to develop synthetic plastic surfaces that continuously generate nitric oxide to deter the formation of biofilms. Plastic surfaces exposed to aqueous environments rapidly become covered by a film of bacteria, which can cause infection. Trace levels of generated nitric oxide can combat this problem by breaking up existing bacterial biofilms. Current research has developed plastics that continuously generate nitric oxide, but not for extended periods of time. This project’s approach is significant because it avoids bacterial resistance to the nitric oxide treatment. Applications of this technology may include removing biofilms from environments such as water filtration devices and consumable medical surfaces.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE210100153
Funder
Australian Research Council
Funding Amount
$497,264.00
Summary
Integrated In situ Characterisation Facilities for Energy Studies. This project aims to establish a new capability to reveal catalytic behaviour of materials under practical working conditions at multi-scale levels. Through in situ monitoring of surface, interface and structural properties of catalysts, this unique integrated facility will overcome current limitations due to a lack of understanding of reaction mechanism, by ex situ and/or individual in situ characterisations. This world-class fa ....Integrated In situ Characterisation Facilities for Energy Studies. This project aims to establish a new capability to reveal catalytic behaviour of materials under practical working conditions at multi-scale levels. Through in situ monitoring of surface, interface and structural properties of catalysts, this unique integrated facility will overcome current limitations due to a lack of understanding of reaction mechanism, by ex situ and/or individual in situ characterisations. This world-class facility will significantly advance a range of electrocatalysis, photocatalysis and battery applications for renewable energy-storage and clean-fuel generation. This will be Australia’s only platform; it will benefit a number of innovative research projects in energy, catalysis and environmental and materials science.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE0560705
Funder
Australian Research Council
Funding Amount
$825,000.00
Summary
Advanced Deformation Simulation Laboratory. For Australia to maintain its position as a world leader in the science of metals processing it must have the capability for state-of-the-art physical simulation. The present proposal is for the purchase and installation of two leading edge simulation tools: a high rate/short inter-pass hot deformation simulator and a hot equal channel angular extrusion press. Advanced hot deformation simulation is required for the development and optimisation of "fast ....Advanced Deformation Simulation Laboratory. For Australia to maintain its position as a world leader in the science of metals processing it must have the capability for state-of-the-art physical simulation. The present proposal is for the purchase and installation of two leading edge simulation tools: a high rate/short inter-pass hot deformation simulator and a hot equal channel angular extrusion press. Advanced hot deformation simulation is required for the development and optimisation of "fast" industrial processes and for understanding the complex microstructural reactions associated with them. High temperature extrusion is required for the development of ultra-fine and nano-grained light metals.Read moreRead less