Discovery Early Career Researcher Award - Grant ID: DE180101190
Funder
Australian Research Council
Funding Amount
$359,446.00
Summary
Interfacial nano-engineering of electrodes for perovskite solar cells. This project aims to explore new strategies of functional electrode design and interfacial engineering for efficient and stable perovskite solar cell application. The key concept is to modify the electron transport and perovskite layers through structural design, interfacial engineering and contact passivation, for use in high-performance solar-to-electricity conversion systems with improved light harvesting and charge collec ....Interfacial nano-engineering of electrodes for perovskite solar cells. This project aims to explore new strategies of functional electrode design and interfacial engineering for efficient and stable perovskite solar cell application. The key concept is to modify the electron transport and perovskite layers through structural design, interfacial engineering and contact passivation, for use in high-performance solar-to-electricity conversion systems with improved light harvesting and charge collection. Expected project outcomes will place Australia at the forefront of practical low-cost and large-scale solar energy conversion technologies.Read moreRead less
Low cost solution-processable 2D nanomaterials for smart windows. This project aims to develop low cost and scalable synthesis of the active functional nanomaterials in smart windows, their facile application techniques, and their integration into the glass manufacturing process. Smart windows, with thermochromic and electrochromic functionalities, will play important roles towards efficient energy usage and conservation (in terms of air-conditioning and lighting) in most buildings including off ....Low cost solution-processable 2D nanomaterials for smart windows. This project aims to develop low cost and scalable synthesis of the active functional nanomaterials in smart windows, their facile application techniques, and their integration into the glass manufacturing process. Smart windows, with thermochromic and electrochromic functionalities, will play important roles towards efficient energy usage and conservation (in terms of air-conditioning and lighting) in most buildings including offices, schools, and residential homes. . The intended outcome of this project is to facilitate the commercialisation of low-cost, energy-saving smart windows for efficient energy usage and conservation, which is an integral part of a sustainable environment.Read moreRead less
Highly functional green materials platform: Starch-ionic liquid-carbon nanotube polymer melt nanocomposites. This project will deliver state of the art scientific advances in green polymers, green plasticisers and tailored nanomaterials for melt processible renewable starch plastics for high-performance applications as electroactive polymers in areas such as biosensors and biodiagnostics.
Industrially Viable Routes for fabrication of Perovskite Solar Cells. Photovoltaic technology based on perovskite solar cell (PSC) is predicated to account for USD34.8 billion by 2027 in the global market. The current synthesis protocol using detrimental solvent for perovskite formation and the unsatisfactory stability of perovskite are two key barriers for commercial production of PSC. This project aims to develop new synthesis methods for stable perovskite materials in solar cells by utilizing ....Industrially Viable Routes for fabrication of Perovskite Solar Cells. Photovoltaic technology based on perovskite solar cell (PSC) is predicated to account for USD34.8 billion by 2027 in the global market. The current synthesis protocol using detrimental solvent for perovskite formation and the unsatisfactory stability of perovskite are two key barriers for commercial production of PSC. This project aims to develop new synthesis methods for stable perovskite materials in solar cells by utilizing green solvents that are viable for large scale production. The anticipated outcomes including industrially compatible material synthesis methods for efficient, stable PSC will significantly advance the manufacture capability and competitiveness of the industrial partner in this important area.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100223
Funder
Australian Research Council
Funding Amount
$340,000.00
Summary
Advanced X-ray diffraction facility for high energy and extreme conditions. X-ray powder diffraction is a powerful technique for determining the structure of matter at the atomic scale. This project will establish a new Australian capability for X-ray powder diffraction under extreme conditions that emulate real harsh service environments for advanced functional materials.
Discovery Early Career Researcher Award - Grant ID: DE210100930
Funder
Australian Research Council
Funding Amount
$396,948.00
Summary
Defect Engineering Enabling Efficient Solar Hydrogen Production. The project aims to achieve efficient renewable hydrogen production through solar driven photoelectrochemical water splitting. As a carbon-emission free process, photoelectrochemical water splitting is significant in solar hydrogen supply. The key idea is to design innovative photoelectrode materials using defect engineering strategy which allows more efficient conversion of solar energy to hydrogen. The expected outcomes include h ....Defect Engineering Enabling Efficient Solar Hydrogen Production. The project aims to achieve efficient renewable hydrogen production through solar driven photoelectrochemical water splitting. As a carbon-emission free process, photoelectrochemical water splitting is significant in solar hydrogen supply. The key idea is to design innovative photoelectrode materials using defect engineering strategy which allows more efficient conversion of solar energy to hydrogen. The expected outcomes include high Solar-to-Hydrogen conversion efficiency on the new materials and cutting-edge knowledge in advanced material design. The success of this project will contribute to the implementation of the Australia's National Hydrogen Strategy and position the nation at the frontier of renewable hydrogen supply technologies.Read moreRead less
New hierarchical electrode design for high-power lithium ion batteries. This project aims to develop new types of hierarchical electrodes for high-rate lithium ion batteries with long cycling life. The key concepts are the development of multi-shelled hollow structured silicon-based anode and Li-rich layered oxides cathode to achieve both high power and energy density, and the adoption of graphene to further improve rate capability and cycling stability. Effective energy storage systems play an ....New hierarchical electrode design for high-power lithium ion batteries. This project aims to develop new types of hierarchical electrodes for high-rate lithium ion batteries with long cycling life. The key concepts are the development of multi-shelled hollow structured silicon-based anode and Li-rich layered oxides cathode to achieve both high power and energy density, and the adoption of graphene to further improve rate capability and cycling stability. Effective energy storage systems play an important role in the development of renewable energies and electric vehicles. The project outcomes will lead to innovative technologies in low carbon emission transportation and efficient energy storage systems.Read moreRead less
Functionalising sustainable natural binders for energy storage devices. This project aims to produce low-cost energy storage devices to meet the energy demands and safety requirements of electric appliances, electric vehicles and smart electricity grids. High-cost and non-regenerable resources and existing energy storage devices’ safety issues have hindered the electrification of portable electronic devices and vehicles and use of intermittent solar and wind energy. This project will use sustain ....Functionalising sustainable natural binders for energy storage devices. This project aims to produce low-cost energy storage devices to meet the energy demands and safety requirements of electric appliances, electric vehicles and smart electricity grids. High-cost and non-regenerable resources and existing energy storage devices’ safety issues have hindered the electrification of portable electronic devices and vehicles and use of intermittent solar and wind energy. This project will use sustainable natural polymers to develop green electrode technologies for manufacturing batteries with greatly reduced production and environmental cost. The in-depth understandings from the combination of experiments and computation simulations will help create strategies to realise low cost, long-life and safe batteries.Read moreRead less
Electronic coupling and nanoscale engineering of two-dimensional nanojunctions. This project aims to improve the design of photovoltaic, energy storage, and nanocatalytic devices by using quantum-size tuning, orientation control, strain engineering, and surface modification to manipulate the electronic coupling and charge transfer of two-dimensional nanojunctions. The limitations of and potential environmental damage from fossil-fuel-based energy resources have increased interest in renewable en ....Electronic coupling and nanoscale engineering of two-dimensional nanojunctions. This project aims to improve the design of photovoltaic, energy storage, and nanocatalytic devices by using quantum-size tuning, orientation control, strain engineering, and surface modification to manipulate the electronic coupling and charge transfer of two-dimensional nanojunctions. The limitations of and potential environmental damage from fossil-fuel-based energy resources have increased interest in renewable energy research. The expected outcomes are electron-scale understanding of the tuneable functionalisation of two-dimensional nanojunctions and the design of low-cost and high-efficiency renewable energy devices.Read moreRead less