Self-assembly and complexity: networks and patterns from materials to markets. Self-assembly leads the formation of patterns without external directing agents. It is responsible for the growth of complex multiscale structures found in biology and materials science and is a crucial concept for development of viable nanotechnologies. Complex systems, from biological ecosystems to financial markets and the Internet, are also characterized by spontaneous clustering and linkages that determine their ....Self-assembly and complexity: networks and patterns from materials to markets. Self-assembly leads the formation of patterns without external directing agents. It is responsible for the growth of complex multiscale structures found in biology and materials science and is a crucial concept for development of viable nanotechnologies. Complex systems, from biological ecosystems to financial markets and the Internet, are also characterized by spontaneous clustering and linkages that determine their collective behaviour. The project will investigate in detail the geometry, topology, materials science and statistical physics of networks, leading to design and characterization of robust self-assembled materials and complex systems.Read moreRead less
ARC Research Network for Advanced Materials. Materials science/engineering is decidedly interdisciplinary, covering all science and impacting on all manufacturing industry. This network will promote interactions that do not usually occur between materials researchers and students across Australia and internationally from diverse disciplines. The scope is broadly based on advanced materials production, processing and properties but focused in four areas, involving: i) innovative structural/functi ....ARC Research Network for Advanced Materials. Materials science/engineering is decidedly interdisciplinary, covering all science and impacting on all manufacturing industry. This network will promote interactions that do not usually occur between materials researchers and students across Australia and internationally from diverse disciplines. The scope is broadly based on advanced materials production, processing and properties but focused in four areas, involving: i) innovative structural/functional materials, ii) high-tech IT/communications/sensing materials, iii) materials solutions for manufacturing, iv) materials for a sustainable Australia, and v) emerging materials technologies. Key programs will promote interdisciplinary workshops and early career researcher interactions.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE180100002
Funder
Australian Research Council
Funding Amount
$808,191.00
Summary
A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The fa ....A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The facility will significantly enhance the research capability in the newly established ARC Training Centre for Automated Manufacture of Advanced Composites, which will engage with Australian industry to improve productivity and material performance for industry sectors such as aerospace, automotive, marine, and sport.Read moreRead less
Nanoporous siloxane membranes for ultrasound mediated ophthalmic drug delivery. This project will develop tailored polymers for use in a novel non-invasive ocular drug delivery device which treats vision threatening conditions such as age-related macular degeneration (AMD). The outcomes of this project will enable an entirely new ocular drug delivery technology, thereby delivering significant benefit to ophthalmic healthcare.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE170100072
Funder
Australian Research Council
Funding Amount
$600,000.00
Summary
Facility for exploring light-matter interactions in space, time and energy. This project aims to create a readily accessible facility consisting of a suite of tools to study light-matter interactions in materials, molecules and biological systems. Understanding light-matter interactions offers insight into the properties of nano- and biomaterials. The project intends to combine local probes and pump-probe spectroscopy methods for studying nanoscale femtosecond dynamics. It will be accessible to ....Facility for exploring light-matter interactions in space, time and energy. This project aims to create a readily accessible facility consisting of a suite of tools to study light-matter interactions in materials, molecules and biological systems. Understanding light-matter interactions offers insight into the properties of nano- and biomaterials. The project intends to combine local probes and pump-probe spectroscopy methods for studying nanoscale femtosecond dynamics. It will be accessible to a broad user base, cementing Australia’s leadership in ultrafast spectroscopy techniques and nano/bio-materials. The facility will provide a window to the quantum nanoworld, with potential for developing new energy efficient light sources, light-harvesting systems and sensors.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100004
Funder
Australian Research Council
Funding Amount
$470,000.00
Summary
Thin film processing cluster: precise synthesis and nano-patterning of functional coatings. This facility will allow Australian researchers to create advanced functional materials with unprecedented control over material configurations and near atomic scale precision in dimensions. This will enable significant advances in high speed photonics and electronics, health and environment monitoring, and micro-energy sources.
Industrial Transformation Training Centres - Grant ID: IC180100049
Funder
Australian Research Council
Funding Amount
$4,380,454.00
Summary
ARC Training Centre for Future Energy Storage Technologies. The ARC Training Centre for Future Energy Storage Technologies aims to equip the next generation of researchers and the energy technology workforce with the skills needed to drive innovation, exploration and investigation so we safeguard our workers and industries. The Centre aims to challenge existing thinking and expand Australia’s capacity in energy storage and production. The Centre expects to create new knowledge and intellectual p ....ARC Training Centre for Future Energy Storage Technologies. The ARC Training Centre for Future Energy Storage Technologies aims to equip the next generation of researchers and the energy technology workforce with the skills needed to drive innovation, exploration and investigation so we safeguard our workers and industries. The Centre aims to challenge existing thinking and expand Australia’s capacity in energy storage and production. The Centre expects to create new knowledge and intellectual property in advanced energy materials, batteries and battery-control systems for integration into end user industries. This Centre will facilitate small to medium-sized enterprises to take a global leadership role in advancing and producing new age storage technologies. By harnessing the expertise of researchers and industry partners the Centre aims to deliver benefit to our economy, the community and the environment.
Read moreRead less
Australian Laureate Fellowships - Grant ID: FL210100017
Funder
Australian Research Council
Funding Amount
$3,115,000.00
Summary
Nanoscale-interactions making future functional materials more powerful . Traditional crystal chemistry can no longer meet the demands for development of new functional materials - the foundation of modern industry. The program aims to overcome this challenge by introducing a new strategy into experimental and theoretical research to transform our understanding and application of nanoscale structural and chemical features in materials. The program expects to build new crystal chemistry that incl ....Nanoscale-interactions making future functional materials more powerful . Traditional crystal chemistry can no longer meet the demands for development of new functional materials - the foundation of modern industry. The program aims to overcome this challenge by introducing a new strategy into experimental and theoretical research to transform our understanding and application of nanoscale structural and chemical features in materials. The program expects to build new crystal chemistry that includes nanoscale-interaction information and deep machine-learning to improve the predictability of material properties. Potential outcomes of the program include enhanced capacity for revolutionary materials development thus keeping Australia's leading position in innovative technology, benefiting academia and industry.Read moreRead less