Linkage Infrastructure, Equipment And Facilities - Grant ID: LE180100002
Funder
Australian Research Council
Funding Amount
$808,191.00
Summary
A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The fa ....A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The facility will significantly enhance the research capability in the newly established ARC Training Centre for Automated Manufacture of Advanced Composites, which will engage with Australian industry to improve productivity and material performance for industry sectors such as aerospace, automotive, marine, and sport.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE110100099
Funder
Australian Research Council
Funding Amount
$290,000.00
Summary
A complete near-field scanning optical microscope for advanced characterisation of novel and functional materials. This near-field optical scanning microscope will be unique in Australia and will substantially enhance national research capabilities in functional materials, nanotechnology, biotechnology and chemistry. It will create a platform to advance Australian research to new levels in pharmaceuticals, nanomaterials and energy storage materials.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100188
Funder
Australian Research Council
Funding Amount
$1,000,000.00
Summary
Epitaxial growth facility for advanced materials. An advanced materials fabrication facility accessible to all Australian researchers will be established. This will allow crystal growth at the atomic level for novel materials with applications including fundamental physics, nanocomposites, energy storage and conversion systems, and solar cells.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE100100030
Funder
Australian Research Council
Funding Amount
$1,200,000.00
Summary
Advanced focused ion beam (FIB) / scanning electron microscopes (SEM) for nanometre scale characterisation and fabrication. These instruments are designed to provide fundamental insights into physical and biological systems though characterisation and fabrication of structures at nanometre length scales. These versatile platforms will support a wide range of projects covering three national research priority areas. These range from the characterisation of light alloys for improving and building ....Advanced focused ion beam (FIB) / scanning electron microscopes (SEM) for nanometre scale characterisation and fabrication. These instruments are designed to provide fundamental insights into physical and biological systems though characterisation and fabrication of structures at nanometre length scales. These versatile platforms will support a wide range of projects covering three national research priority areas. These range from the characterisation of light alloys for improving and building Australia's Aluminium, Magnesium and Titanium alloy industries, to the study of aerosol particles for improved pulmonary drug delivery for asthma patients, the development of advanced solar cells and the study of the integrated behaviour of the soil-microbe system for sustainable agriculture.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE140100042
Funder
Australian Research Council
Funding Amount
$190,000.00
Summary
UV to mid-infrared fluorescence spectrometer for use in mineral analysis, radiation dosimetry, and laser materials characterisation. Ultraviolet to mid-infrared fluorescence spectrometer for use in mineral analysis, radiation dosimetry and laser materials characterisation: This project will provide equipment with a vast capability to collect ultraviolet to mid-infrared fluorescence with high temporal measurement accuracy, and highly flexible excitation (spectral and temporal). This will enhance ....UV to mid-infrared fluorescence spectrometer for use in mineral analysis, radiation dosimetry, and laser materials characterisation. Ultraviolet to mid-infrared fluorescence spectrometer for use in mineral analysis, radiation dosimetry and laser materials characterisation: This project will provide equipment with a vast capability to collect ultraviolet to mid-infrared fluorescence with high temporal measurement accuracy, and highly flexible excitation (spectral and temporal). This will enhance active research into new glasses and laser crystals, probing of defect states resulting from ionising radiation absorption in environmental and medical dosimetry materials, investigation of novel fluorescence techniques for mineral identification, through to improving chemical detection capability (for example, detection of explosives). The instrument comprises modules that enable excitation in the ultraviolet, visible, and infrared from a tunable laser system, and high-efficiency collection and processing of fluorescence spectra.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE170100072
Funder
Australian Research Council
Funding Amount
$600,000.00
Summary
Facility for exploring light-matter interactions in space, time and energy. This project aims to create a readily accessible facility consisting of a suite of tools to study light-matter interactions in materials, molecules and biological systems. Understanding light-matter interactions offers insight into the properties of nano- and biomaterials. The project intends to combine local probes and pump-probe spectroscopy methods for studying nanoscale femtosecond dynamics. It will be accessible to ....Facility for exploring light-matter interactions in space, time and energy. This project aims to create a readily accessible facility consisting of a suite of tools to study light-matter interactions in materials, molecules and biological systems. Understanding light-matter interactions offers insight into the properties of nano- and biomaterials. The project intends to combine local probes and pump-probe spectroscopy methods for studying nanoscale femtosecond dynamics. It will be accessible to a broad user base, cementing Australia’s leadership in ultrafast spectroscopy techniques and nano/bio-materials. The facility will provide a window to the quantum nanoworld, with potential for developing new energy efficient light sources, light-harvesting systems and sensors.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE120100223
Funder
Australian Research Council
Funding Amount
$340,000.00
Summary
Advanced X-ray diffraction facility for high energy and extreme conditions. X-ray powder diffraction is a powerful technique for determining the structure of matter at the atomic scale. This project will establish a new Australian capability for X-ray powder diffraction under extreme conditions that emulate real harsh service environments for advanced functional materials.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE130100072
Funder
Australian Research Council
Funding Amount
$350,000.00
Summary
An x-ray scattering facility for advanced characterisation of natural and novel materials. This project will establish an analytical facility that will enable measurement of the atomic and finescale structure of materials. This facility will be used to help design novel materials for industrial, environmental and biomedical applications and to develop green technologies and processes for energy production and mining.
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE0775559
Funder
Australian Research Council
Funding Amount
$400,000.00
Summary
16 Tesla Physical Property Measurement System (PPMS). Success of this proposal will enhance national and international collaboration through access to the proposed 16-Tesla PPMS by a large number of collaborating groups. This state-the-art facility will substantially enhance the materials characterisation capability of Australia. Equipped with this 16-Tesla PPMS and other related facilities the Institute for Superconducting and Electronic Materials at the University of Wollongong will continue a ....16 Tesla Physical Property Measurement System (PPMS). Success of this proposal will enhance national and international collaboration through access to the proposed 16-Tesla PPMS by a large number of collaborating groups. This state-the-art facility will substantially enhance the materials characterisation capability of Australia. Equipped with this 16-Tesla PPMS and other related facilities the Institute for Superconducting and Electronic Materials at the University of Wollongong will continue as an important national and international centre for physical property characterisation. It will allow Australian researchers to remain competitive in this important of materials research.Read moreRead less