Self-assembly and complexity: networks and patterns from materials to markets. Self-assembly leads the formation of patterns without external directing agents. It is responsible for the growth of complex multiscale structures found in biology and materials science and is a crucial concept for development of viable nanotechnologies. Complex systems, from biological ecosystems to financial markets and the Internet, are also characterized by spontaneous clustering and linkages that determine their ....Self-assembly and complexity: networks and patterns from materials to markets. Self-assembly leads the formation of patterns without external directing agents. It is responsible for the growth of complex multiscale structures found in biology and materials science and is a crucial concept for development of viable nanotechnologies. Complex systems, from biological ecosystems to financial markets and the Internet, are also characterized by spontaneous clustering and linkages that determine their collective behaviour. The project will investigate in detail the geometry, topology, materials science and statistical physics of networks, leading to design and characterization of robust self-assembled materials and complex systems.Read moreRead less
Application of First-principles Theory in Condensed Matter Physics, Surface Physics, Chemistry, and Engineering: Coatings, Catalysis, and Devices. The project addresses areas of high technological interest, namely the development of nitride-based materials for hard-coatings, spintronic (control and use of electron spin) and optoelectronic (in the blue/UV energy range) devices - as well as the area of heterogeneous oxidation catalysis. Using state-of-the-art methods it will lead to the developme ....Application of First-principles Theory in Condensed Matter Physics, Surface Physics, Chemistry, and Engineering: Coatings, Catalysis, and Devices. The project addresses areas of high technological interest, namely the development of nitride-based materials for hard-coatings, spintronic (control and use of electron spin) and optoelectronic (in the blue/UV energy range) devices - as well as the area of heterogeneous oxidation catalysis. Using state-of-the-art methods it will lead to the development of new materials and devices of relevance to industry.Read moreRead less
Design in Nanostructured Materials - Formation and Stability of Nanostructure in Light Alloys and Light Metal Hybrids. Under its Light Metals Action Agenda, Australia recognizes a strategic interest in the production, processing and applications of the light metals, and a growth in global markets for light metals technology. Light metals research is a designated national priority, and this program will advance an established international leadership in the design and downstream processing of the ....Design in Nanostructured Materials - Formation and Stability of Nanostructure in Light Alloys and Light Metal Hybrids. Under its Light Metals Action Agenda, Australia recognizes a strategic interest in the production, processing and applications of the light metals, and a growth in global markets for light metals technology. Light metals research is a designated national priority, and this program will advance an established international leadership in the design and downstream processing of the light alloys. It will also provide leadership in a new national research activity in light metal hybrid structures, targeted at innovation in materials design and the expansion of markets for the light metals. It will underpin major developments in the light metals industry nationally and globally, and extend linkages with major research centres internationally.Read moreRead less
Advanced products through multiscale microstructure engineering. The metals manufacturing industry is one of the most important in Australia. Future growth and sustainability of the sector is critically dependent on the development of innovative metal products and materials.. In this program Australia's leading research group in metal manufacturing will develop new products and processes through the controlled manipulation of the microstructure at a number of levels: from nano scale to macro s ....Advanced products through multiscale microstructure engineering. The metals manufacturing industry is one of the most important in Australia. Future growth and sustainability of the sector is critically dependent on the development of innovative metal products and materials.. In this program Australia's leading research group in metal manufacturing will develop new products and processes through the controlled manipulation of the microstructure at a number of levels: from nano scale to macro scale. The areas of application include the automotive industry, biomaterials, surface engineering and the emerging area of microforming technologiesRead moreRead less
Deformation and Fracture Studies on Polymer Nano-Composites. Polymer nano-composites are a class of emerging materials consisting of nano-meter scale inorganic fillers dispersed in an organic polymer matrix. THey have superior specific strengh and stiffness, good fire retardant and barrier properties. AS such, they have found many potential applications in the automotive and packagingindustries. However, one major limitation is their low fracture toughness. This project aims to study the ori ....Deformation and Fracture Studies on Polymer Nano-Composites. Polymer nano-composites are a class of emerging materials consisting of nano-meter scale inorganic fillers dispersed in an organic polymer matrix. THey have superior specific strengh and stiffness, good fire retardant and barrier properties. AS such, they have found many potential applications in the automotive and packagingindustries. However, one major limitation is their low fracture toughness. This project aims to study the origin of brittleness and improve the toughness. THe anticipated outcomes are: (a) new methods of toughening, and (b) design tools to tailor processing-microstructure-mechanical properties of these nano-composites.Read moreRead less