Interactions between linear and interfacial crystalline defects and their impact on mechanical properties in nanostructured metals and alloys. The project aims to apply in-situ deformation transmission electron microscopy to investigate the interactions among crystalline defects in nanostructured metallic materials and to explore the effect of the interactions on mechanical properties. The results will guide the structural design of nanomaterials with superior mechanical properties.
Advanced high strength steels produced by energy efficient direct strip casting. Over one billion tonnes of steel is produced every year and one method of reducing the environmental footprint of this production is through strip casting. This process reduces the energy required to process liquid steel into thin sheet product by an astounding 90 per cent. This proposal aims to expand the application of this technology to new steel grades.
Development of SmCo-based High Temperature Permanent Magnets: Microstructure and Coercivity Mechanism. This project is to develop high performance permanent magnets for elevated temperature applications. Microstructure and magnetic properties will be examined using atom probe, TEM, XRD and magnetometry. The specific atom probe is the state-of-the-art technique for the characterization of nanostructure and falls in the designated National Research Priority 3, PG2 Frontier Technologies (nanotechno ....Development of SmCo-based High Temperature Permanent Magnets: Microstructure and Coercivity Mechanism. This project is to develop high performance permanent magnets for elevated temperature applications. Microstructure and magnetic properties will be examined using atom probe, TEM, XRD and magnetometry. The specific atom probe is the state-of-the-art technique for the characterization of nanostructure and falls in the designated National Research Priority 3, PG2 Frontier Technologies (nanotechnology). The magnet alloys concerned are an example of Advanced Materials (NRP3, PG3), possessing the best performance amongst such functional materials. The expertise gained in the use of the atom probe technique in this project will have broader applications in the study of nanostructured materials and other metal alloy problems within Australia.Read moreRead less
Unravelling structure-function relationships in high mobility donor-acceptor co-polymers. This project seeks to understand the high-performance of a new generation of semiconducting plastics. This research will enable the development of low-cost printed electronics such as flexible displays and sensors.
A Novel Approach to Polymer/Nanosheet Composites and Their Fundamentals. Multifunctional Polymer/nanosheet composites have not yet been widely scaled up in polymer processing and composite industries mainly due to cost and inhaling hazard. This project proposes a novel methodology which embeds nanosheet preparation within polymer melt to both remove the inhaling hazard and lower the cost; the key is to develop two groups of nanosheet intercalation compounds which can expand at the polymer proces ....A Novel Approach to Polymer/Nanosheet Composites and Their Fundamentals. Multifunctional Polymer/nanosheet composites have not yet been widely scaled up in polymer processing and composite industries mainly due to cost and inhaling hazard. This project proposes a novel methodology which embeds nanosheet preparation within polymer melt to both remove the inhaling hazard and lower the cost; the key is to develop two groups of nanosheet intercalation compounds which can expand at the polymer processing temperature, to exfoliate and disperse nanosheets in polymers. It is expected to generate new knowledge of the structure-property relationships and fracture mechanisms of these composites, for industry to scale up this technology and to develop new product.Read moreRead less
New nanolaminate ternary and quaternary alloy phases by thin film synthesis. The availability of suitable materials is a driver of new technologies. We will develop a new class of ternary and quaternary alloys with nanolaminate structures at the atomic scale using a combination of theoretical modeling, novel thin film synthesis and advanced characterization methods. The nanostructure of these materials is expected to promote a rare combination of metallic and ceramic like properties, such as low ....New nanolaminate ternary and quaternary alloy phases by thin film synthesis. The availability of suitable materials is a driver of new technologies. We will develop a new class of ternary and quaternary alloys with nanolaminate structures at the atomic scale using a combination of theoretical modeling, novel thin film synthesis and advanced characterization methods. The nanostructure of these materials is expected to promote a rare combination of metallic and ceramic like properties, such as low friction, high mechanical strength, resistance to heat shock, fracture, corrosion and oxidation, up to very high temperatures. Careful characterisation of the growth process and structure-property relationships will allow us to develop methods of tailoring the property mix for operation in harsh environments.Read moreRead less
A Self-Repairing Entropy-Stabilized Oxide as a Protective Coating. All biological organisms, from plants to living creatures, can heal minor wounds and damages. Based on the recent breakthrough by the CI’s team, this project aims to design and develop a new oxide containing multiple elements in a form of (AlCoCrCu0.5FeNi)3O4 that can resist damages through a self-repairing mechanism. Fabricated by radio frequency (RF) magnetron sputtering, this extraordinary self-repairing phenomenon makes this ....A Self-Repairing Entropy-Stabilized Oxide as a Protective Coating. All biological organisms, from plants to living creatures, can heal minor wounds and damages. Based on the recent breakthrough by the CI’s team, this project aims to design and develop a new oxide containing multiple elements in a form of (AlCoCrCu0.5FeNi)3O4 that can resist damages through a self-repairing mechanism. Fabricated by radio frequency (RF) magnetron sputtering, this extraordinary self-repairing phenomenon makes this new material highly desirable as a coating to protect structures and machinery working in hash conditions. Therefore, it has broad applications in space technologies, nuclear power facilities and aerospace industry, as well as in shipbuilding industry. Read moreRead less
Development of Novel Spin Caloritronic Materials and Devices for Heat Management in Nanoelectronic Systems. Spin caloritronics is a new field that combines concepts from spintronics and thermoelectricity. This project is inspired by spin Seebeck effect observed in magnetic insulators and motivated by the basic requirements of nanoscale heat management devices. Such devices are the key components promising to surmount fundamental limits of microelectronic technologies with heat dissipation and p ....Development of Novel Spin Caloritronic Materials and Devices for Heat Management in Nanoelectronic Systems. Spin caloritronics is a new field that combines concepts from spintronics and thermoelectricity. This project is inspired by spin Seebeck effect observed in magnetic insulators and motivated by the basic requirements of nanoscale heat management devices. Such devices are the key components promising to surmount fundamental limits of microelectronic technologies with heat dissipation and power consumption as the size of charge-based logic devices shrinks into nanometre scale. This program is aimed at experimental and theoretical development of novel spin caloritronic materials with spin Seebeck effect at ambient temperature, which is orders of magnitude higher than state-of-the-art materials, for heat management in nanoelectronic systems.Read moreRead less
Modification of optical properties of photocatalytic titania. The aim of the project is to capitalise on and optimise the recently discovered successful modification of the optical properties of titanium oxide (TiO2), such that efficient solar splitting of water is possible. TiO2 photocatalysts of adequate efficiency will be implemented as photoanodes in photoelectrochemical cells capable of large-scale production of hydrogen.
Development of ultrafine Grained Steels. This project will develop new methods to produce steels with much finer microstructures, and investigate how these microstructures form. This will markedly increase the strength and toughness of these steels, which is particularly required for the pipeline, off shore platform and large construction industries. The method to be used involves controlling the hot deformation of the steel and control of the phase transformation during or after deformation. ....Development of ultrafine Grained Steels. This project will develop new methods to produce steels with much finer microstructures, and investigate how these microstructures form. This will markedly increase the strength and toughness of these steels, which is particularly required for the pipeline, off shore platform and large construction industries. The method to be used involves controlling the hot deformation of the steel and control of the phase transformation during or after deformation. Current work has shown that it is possible to reduce the grain size from 5 to 1microns using quite simple methods.Read moreRead less