Discovery Early Career Researcher Award - Grant ID: DE180101190
Funder
Australian Research Council
Funding Amount
$359,446.00
Summary
Interfacial nano-engineering of electrodes for perovskite solar cells. This project aims to explore new strategies of functional electrode design and interfacial engineering for efficient and stable perovskite solar cell application. The key concept is to modify the electron transport and perovskite layers through structural design, interfacial engineering and contact passivation, for use in high-performance solar-to-electricity conversion systems with improved light harvesting and charge collec ....Interfacial nano-engineering of electrodes for perovskite solar cells. This project aims to explore new strategies of functional electrode design and interfacial engineering for efficient and stable perovskite solar cell application. The key concept is to modify the electron transport and perovskite layers through structural design, interfacial engineering and contact passivation, for use in high-performance solar-to-electricity conversion systems with improved light harvesting and charge collection. Expected project outcomes will place Australia at the forefront of practical low-cost and large-scale solar energy conversion technologies.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE190100311
Funder
Australian Research Council
Funding Amount
$360,000.00
Summary
Multidirectional stretchable and wearable tactile sensors. This project aims to establish a new platform for multidirectional wearable tactile sensors with high sensitivity and stretchability based on rational material designs and structural engineering. Wearable tactile sensors with multidirectional force-sensing capabilities are of great importance in robotics, prosthetics, and rehabilitation devices. This novel form of tactile sensing will be developed through fundamental research into the wo ....Multidirectional stretchable and wearable tactile sensors. This project aims to establish a new platform for multidirectional wearable tactile sensors with high sensitivity and stretchability based on rational material designs and structural engineering. Wearable tactile sensors with multidirectional force-sensing capabilities are of great importance in robotics, prosthetics, and rehabilitation devices. This novel form of tactile sensing will be developed through fundamental research into the working mechanism of directional sensors to enable detection of different force intensities. Combined with new device fabrication techniques, and innovative material structural engineering, the expected outcome is a new multidirectional tactile sensor system with high sensitivity and stretchability.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE220100816
Funder
Australian Research Council
Funding Amount
$430,000.00
Summary
Liquid Metal Nano Metallurgy by Controlled Phase Transition Thermodynamics. The phase transformation thermodynamics of post-transition metals, which form low-melting-point alloys, remain largely unknown. This project aims to explore low-energy metallurgy pathways enabled by liquid metals to discover such dynamics. The strategy is to harvest structured/crystalline materials by incorporating target metal species into liquid metal solvents and stimulating autonomous phase separation and pattern for ....Liquid Metal Nano Metallurgy by Controlled Phase Transition Thermodynamics. The phase transformation thermodynamics of post-transition metals, which form low-melting-point alloys, remain largely unknown. This project aims to explore low-energy metallurgy pathways enabled by liquid metals to discover such dynamics. The strategy is to harvest structured/crystalline materials by incorporating target metal species into liquid metal solvents and stimulating autonomous phase separation and pattern formation during phase transition. Contemporary instruments and technologies will be employed to achieve active control of these fundamental processes at different scales. The expected outcomes will reveal new insights in traditional metallurgy as well as extend metallurgical concepts to electronics, optics, and catalysis.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE210100930
Funder
Australian Research Council
Funding Amount
$396,948.00
Summary
Defect Engineering Enabling Efficient Solar Hydrogen Production. The project aims to achieve efficient renewable hydrogen production through solar driven photoelectrochemical water splitting. As a carbon-emission free process, photoelectrochemical water splitting is significant in solar hydrogen supply. The key idea is to design innovative photoelectrode materials using defect engineering strategy which allows more efficient conversion of solar energy to hydrogen. The expected outcomes include h ....Defect Engineering Enabling Efficient Solar Hydrogen Production. The project aims to achieve efficient renewable hydrogen production through solar driven photoelectrochemical water splitting. As a carbon-emission free process, photoelectrochemical water splitting is significant in solar hydrogen supply. The key idea is to design innovative photoelectrode materials using defect engineering strategy which allows more efficient conversion of solar energy to hydrogen. The expected outcomes include high Solar-to-Hydrogen conversion efficiency on the new materials and cutting-edge knowledge in advanced material design. The success of this project will contribute to the implementation of the Australia's National Hydrogen Strategy and position the nation at the frontier of renewable hydrogen supply technologies.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE170101249
Funder
Australian Research Council
Funding Amount
$360,000.00
Summary
Polymers with controllable networks. This project aims to understand the mechanism and molecular level factors controlling the network flexibility, reversibility and rapid curing of cross-linked polymer structures. A highly formable, rapidly curing polymer network could improve manufacture of composites where a fibre material is embedded in a polymer matrix. The key challenges for these materials are achieving high rates of production (one part per minute) and end of life recyclability. Expected ....Polymers with controllable networks. This project aims to understand the mechanism and molecular level factors controlling the network flexibility, reversibility and rapid curing of cross-linked polymer structures. A highly formable, rapidly curing polymer network could improve manufacture of composites where a fibre material is embedded in a polymer matrix. The key challenges for these materials are achieving high rates of production (one part per minute) and end of life recyclability. Expected outcomes are polymer materials with tailorable properties and the uptake of lightweight composite materials into mass transport systems.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE140100188
Funder
Australian Research Council
Funding Amount
$390,572.00
Summary
Understanding failure mechanisms in micro-solder joints in three dimensional integrated circuit packaging. High-density three-dimensional integrated circuits used in microelectronic devices are evolving and placing increasing demands on micro-solder joints. Tin based lead-free solder alloys require further development to satisfy performance requirements, particularly with respect to the properties of the intermetallic forms between solder and substrate. This project investigates the mechanical p ....Understanding failure mechanisms in micro-solder joints in three dimensional integrated circuit packaging. High-density three-dimensional integrated circuits used in microelectronic devices are evolving and placing increasing demands on micro-solder joints. Tin based lead-free solder alloys require further development to satisfy performance requirements, particularly with respect to the properties of the intermetallic forms between solder and substrate. This project investigates the mechanical properties and deformation mechanisms of intermetallic forms with trace element additions using micro-pillar compression and ultra-high voltage transmission electron microscopy. Beyond the development of techniques transferable to similar research, this project will lead to significant intellectual property relating to solder composition.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE180101454
Funder
Australian Research Council
Funding Amount
$359,446.00
Summary
High performance lead-free piezoelectrics based on polar nanoregions. This project aims to enhance the electro-mechanical couplings of lead free piezoelectrics via introducing polar nanoregions for medical transducers applications. This is expected to impact on the design and development of high-performance lead free piezoelectrics, and have environmental benefits through replacing lead based counterparts.
Discovery Early Career Researcher Award - Grant ID: DE220100427
Funder
Australian Research Council
Funding Amount
$446,000.00
Summary
Engineered multifunctional membranes for aqueous organic redox flow battery. This project aims to develop multifunctional membranes with high ion conductivity and selectivity and high energy density to address the key challenges in the development of aqueous organic redox flow battery for renewable energy storage. The project will develop novel methodologies for precisely tuning and functionalising microporous materials to achieve cost-effective and scalable fabrication of membranes with multi-f ....Engineered multifunctional membranes for aqueous organic redox flow battery. This project aims to develop multifunctional membranes with high ion conductivity and selectivity and high energy density to address the key challenges in the development of aqueous organic redox flow battery for renewable energy storage. The project will develop novel methodologies for precisely tuning and functionalising microporous materials to achieve cost-effective and scalable fabrication of membranes with multi-functions, thus improving the energy efficiency and retaining the cycling capacity of redox flow batteries. The advancement of multifunctional membranes will enhance the efficiency of storage of intermittent and fluctuating renewable resources, thereby contributing to the reduction of carbon footprint in Australia. Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE220100746
Funder
Australian Research Council
Funding Amount
$433,000.00
Summary
Engineering ion specificity for water electrolysis. This project aims to understand how foreign ions in water can be manipulated to selectively control the activity and selectivity of electrocatalytic water splitting and explore the potential if seawater or low-grade-water can be used as water feed to mitigate the economical barrier for large-scale hydrogen production through electrolysis. The new knowledge gained will be helpful for future design of more cost-effective electrolyser systems to u ....Engineering ion specificity for water electrolysis. This project aims to understand how foreign ions in water can be manipulated to selectively control the activity and selectivity of electrocatalytic water splitting and explore the potential if seawater or low-grade-water can be used as water feed to mitigate the economical barrier for large-scale hydrogen production through electrolysis. The new knowledge gained will be helpful for future design of more cost-effective electrolyser systems to underpin Australia’s emerging hydrogen economy.Read moreRead less
Discovery Early Career Researcher Award - Grant ID: DE200100448
Funder
Australian Research Council
Funding Amount
$400,116.00
Summary
Developing high-performance GeTe-based thermoelectric materials. This project aims to develop high-performance germanium telluride-based thermoelectric materials by microstructure engineering and band engineering, which will accelerate the drive for eco-friendly energy technology. The outcomes can result in innovative strategies for maximising thermoelectric performance in broader materials and lead to significant progress in knowledge of materials science, solid-state physics, and chemical scie ....Developing high-performance GeTe-based thermoelectric materials. This project aims to develop high-performance germanium telluride-based thermoelectric materials by microstructure engineering and band engineering, which will accelerate the drive for eco-friendly energy technology. The outcomes can result in innovative strategies for maximising thermoelectric performance in broader materials and lead to significant progress in knowledge of materials science, solid-state physics, and chemical science. Thermoelectric devices assembled from as-obtained high-efficiency materials can be used for recovering waste-heat in mining industries and harvesting the waste-heat from engines to improve fuel consumption efficiency, which will strategically boost Australia's energy industry, environment, and economy.Read moreRead less