Fatigue in Lead-free Piezoceramics. This project aims are to achieve a fundamental understanding of the fatigue behaviour of lead-free piezoelectric ceramics which achieve high strain through phase transformations and then ascertain the effects of this behaviour on material degradation rates. The expected outcomes will facilitate replacement of toxic lead in commodity electronics. The focus will be on new lead-free bismuth-alkali-based piezoelectric ceramic systems which demonstrate exciting pot ....Fatigue in Lead-free Piezoceramics. This project aims are to achieve a fundamental understanding of the fatigue behaviour of lead-free piezoelectric ceramics which achieve high strain through phase transformations and then ascertain the effects of this behaviour on material degradation rates. The expected outcomes will facilitate replacement of toxic lead in commodity electronics. The focus will be on new lead-free bismuth-alkali-based piezoelectric ceramic systems which demonstrate exciting potential as alternate materials to lead zirconate titanate (PZT) materials. Successful optimisation of the materials' design and knowledge of their degradation rates are expected to facilitate their commercialisation through a profound reduction in the environmental challenges associated with manufacture and disposal of devices.Read moreRead less
Nanoporous siloxane membranes for ultrasound mediated ophthalmic drug delivery. This project will develop tailored polymers for use in a novel non-invasive ocular drug delivery device which treats vision threatening conditions such as age-related macular degeneration (AMD). The outcomes of this project will enable an entirely new ocular drug delivery technology, thereby delivering significant benefit to ophthalmic healthcare.
Highly functional green materials platform: Starch-ionic liquid-carbon nanotube polymer melt nanocomposites. This project will deliver state of the art scientific advances in green polymers, green plasticisers and tailored nanomaterials for melt processible renewable starch plastics for high-performance applications as electroactive polymers in areas such as biosensors and biodiagnostics.
Lithium-air battery: a green energy source for the sustainable future. Electrification of vehicles and the implementation of smart electric grids can dramatically reduce greenhouse gas emissions and realise sustainable development. Lithium-air batteries have the highest energy density among all battery systems and are therefore a promising power source for electric vehicles and stationary energy storage.
Novel fuel-cell structures based on electroactive polymers. This project will tackle some of the challenges currently hindering progression of our society into a post-petroleum era via materials developments that will lead to in-expensive, more efficient fuel cell technologies. Specifically, a new class of organic catalysts and novel ion conducting membranes will be integrated into functional fuel-cells.
New materials for manipulating intracellular communication. This project aims to identify new techniques for incorporating cell-signalling triggers into macromolecules, therefore enabling the development of next-generation stimuli-responsive nanoparticles that can emit signalling molecules on demand. Harnessing nanomaterials to stimulate specific sub-cellular processes is a neglected area in nanotechnology research. These nanoparticles could potentially be used to deliver signalling molecules fo ....New materials for manipulating intracellular communication. This project aims to identify new techniques for incorporating cell-signalling triggers into macromolecules, therefore enabling the development of next-generation stimuli-responsive nanoparticles that can emit signalling molecules on demand. Harnessing nanomaterials to stimulate specific sub-cellular processes is a neglected area in nanotechnology research. These nanoparticles could potentially be used to deliver signalling molecules for agricultural, pharmaceutical and veterinary applications. The project is expected to develop a new suite of materials that could ultimately be used to improve the yield of important commercial crops, or revitalise the use of medicines limited by their poor side effect profile.Read moreRead less
Crack Propagation within Graded Interfaces. Functionally graded interfaces are a technologically new way of joining materials in a wide range of biomedical and industrial applications. The reduction in the interfacial stresses resulting from the graded interface increases the structural integrity of the component, however, existing models do not fully address issues of plasticity and cyclic fatigue to their fracture. The intention of this study is to investigate how modifications to the ductil ....Crack Propagation within Graded Interfaces. Functionally graded interfaces are a technologically new way of joining materials in a wide range of biomedical and industrial applications. The reduction in the interfacial stresses resulting from the graded interface increases the structural integrity of the component, however, existing models do not fully address issues of plasticity and cyclic fatigue to their fracture. The intention of this study is to investigate how modifications to the ductile reinforcement phase and how the cyclic loading influence crack extension within a graded interface. These results will assist in future design and prediction of the in-service lifetime of components containing gradient interfaces.Read moreRead less
Linkage Infrastructure, Equipment And Facilities - Grant ID: LE180100002
Funder
Australian Research Council
Funding Amount
$808,191.00
Summary
A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The fa ....A facility for laser-based automated manufacturing of carbon composites. This project aims to create an advanced manufacturing facility for carbon-composites research by integrating laser-based processing and robotic automation. It will enable fundamental research on rapid processing of high-performance thermoplastics and metal-composite hybrids, including functionalisation of the composite through nano-material coating technology, and new instrumentation for structural health monitoring. The facility will significantly enhance the research capability in the newly established ARC Training Centre for Automated Manufacture of Advanced Composites, which will engage with Australian industry to improve productivity and material performance for industry sectors such as aerospace, automotive, marine, and sport.Read moreRead less
Self-assembled surface arrays of mesoscale plasmonic devices for switchable control of coloured surfaces. This project has a well-defined outcome with potentially significant commercial interest. The proposed device is novel and the development of it will enhance the science and technology infrastructure within Australia, taking it into original and exciting directions. A successful demonstration of it will enhance Australia's competitive position in the field of nanotechnology and could conceiv ....Self-assembled surface arrays of mesoscale plasmonic devices for switchable control of coloured surfaces. This project has a well-defined outcome with potentially significant commercial interest. The proposed device is novel and the development of it will enhance the science and technology infrastructure within Australia, taking it into original and exciting directions. A successful demonstration of it will enhance Australia's competitive position in the field of nanotechnology and could conceivably lead to a manufacturing activity either located in Australia or in which Australian entities have an interest. Envisaged applications include optical circuitry, 'smart' windows and display surfaces on consumer devices.Read moreRead less